-
Notifications
You must be signed in to change notification settings - Fork 3
/
extract_fv_color_v2r.py
315 lines (252 loc) · 10.8 KB
/
extract_fv_color_v2r.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
#Python2,3 compatible headers
from __future__ import unicode_literals,division
from builtins import int
from builtins import range
#System packages
import torch
from torch.autograd import Variable,grad
import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim
import numpy
import scipy
import scipy.misc
import math
import time
import random
import argparse
import sys
import os
import re
import copy
import importlib
from collections import namedtuple
from collections import OrderedDict
from itertools import chain
import PIL.Image
import torchvision.datasets.folder
import torchvision.transforms.functional as Ft
import torchvision.transforms as Ts
import PIL.Image as Image
import torch.utils.data.dataloader as myDataLoader
import skimage.io
def loadim(fname):
img = skimage.io.imread(fname)
img = img.astype(dtype=numpy.float32)
h, w, c = img.shape
dx = int((w - 224) / 2)
dy = int((w - 224) / 2)
img = img[dy:dy+224, dx:dx+224, :]
# perform tensor formatting and normalization explicitly
# convert to CHW dimension ordering
img = numpy.transpose(img, (2, 0, 1))
# convert to NCHW dimension ordering
img = numpy.expand_dims(img, 0)
# normalize the image
# convert image to a gpu tensor
img = img / 255.0
batch_data = torch.from_numpy(img).cuda();
return batch_data;
def extract_fv(model_filepath,examples_dirpath,example_img_format='png',model_id=0):
#Hyper params
nsteps=11;
nrounds=8;
lr=3e-2;
wl2=1e-4;
wdiv=0.1;
batch=5;
nlayers=2;
nh=16;
checkpoints=[10];
checkpoints2=[10];
def recolor(im,recolor_net,aug=False):
N=im.shape[0];
if aug:
im_=[];
for i in range(N):
im_i=im[i];
brightness_factor=float(torch.Tensor(1).uniform_(0.8,1.2));
contrast_factor=float(torch.Tensor(1).uniform_(0.8,1.2));
gamma=float(torch.Tensor(1).uniform_(0.8,1.2));
hue_factor=float(torch.Tensor(1).uniform_(-0.1,0.1));
im_i=Ft.adjust_brightness(im_i,brightness_factor);
im_i=Ft.adjust_contrast(im_i,contrast_factor);
im_i=Ft.to_tensor(Ft.adjust_gamma(Ft.to_pil_image(im_i.cpu()),gamma)).cuda();
im_i=Ft.to_tensor(Ft.adjust_hue(Ft.to_pil_image(im_i.cpu()),hue_factor)).cuda();
im_.append(im_i);
im=torch.stack(im_,dim=0);
imout=recolor_net(im-0.5)+im-0.5;
imout=F.sigmoid(imout*5);
return imout;
def get_l2(recolor_net):
l2=0;
for param in recolor_net.parameters():
l2=l2+(param**2).sum();
return l2;
def get_color_brick(recolor_net):
color_data=torch.Tensor([[0,0,0],[1,0,0],[0,1,0],[0,0,1],[1,1,0],[1,0,1],[0,1,1],[1,1,1]]);
color_data=color_data.view(-1,3,1,1).cuda();
color_brick=recolor(color_data,recolor_net).view(-1);
return color_brick;
model=torch.load(model_filepath);
imnames=[fname for fname in os.listdir(examples_dirpath) if fname.endswith(example_img_format)];
model=model.cuda()
model.eval();
#First run through the images and pick 1 per class
nim=len(imnames);
im_by_class={};
nclasses=-1;
for i in range(0,nim):
imname=imnames[i];
im=loadim(os.path.join(examples_dirpath,imname)).cuda();
scores=model(im.cuda()).data.cpu();
nclasses=scores.shape[1];
_,pred=scores.max(dim=1);
pred=int(pred);
if not pred in im_by_class:
im_by_class[pred]=[];
im_by_class[pred].append(imname);
imnames=[];
for c in range(nclasses):
if c in im_by_class:
imnames.append(im_by_class[c]);
else:
imnames.append([])
#Load images, max 5 per class
ims=[];
for c in range(nclasses):
if len(imnames[c])>0:
#Load max 5 images
N=min(batch,len(imnames[c]))
ims_c=[];
for i in range(N):
imname=imnames[c][i];
ims_c.append(loadim(os.path.join(examples_dirpath,imname)).cuda())
ims_c=torch.cat(ims_c,dim=0);
ims.append(ims_c);
else:
print('class %d missing ims'%c)
ims.append(None);
#Collect the following features
nim=len(imnames);
nchkpt=len(checkpoints);
nchkpt2=len(checkpoints2);
scores_pred=torch.zeros(nclasses,nclasses);
color_loss=torch.zeros(nclasses,nrounds,nchkpt);
color_loss2=torch.zeros(nclasses,nrounds,nchkpt);
color_brick=torch.zeros(nclasses,nrounds,nchkpt,24);
color_l2=torch.zeros(nclasses,nrounds,nchkpt);
color_div=torch.zeros(nclasses,nrounds,nchkpt);
color_loss_before=torch.zeros(nclasses,nclasses,nrounds,nchkpt2);
color_loss_after=torch.zeros(nclasses,nclasses,nrounds,nchkpt2);
import arch.recolor as arch_recolor
#Loop through the images in batches
t0=time.time();
for c in range(nclasses):
if not (ims[c] is None):
#Prediction
scores=F.log_softmax(model(ims[c]),dim=1).data.cpu();
scores_pred[c,:]=scores.mean(0);
color_bricks=[];
for round_id in range(nrounds):
recolor_net=arch_recolor.new(nlayers,nh).cuda();
opt=optim.Adam(recolor_net.parameters(),lr=lr,betas=(0.5,0.7));
#Gradient descend
color_bricks_r=[];
for k in range(nsteps):
#Randomly perturb the trigger using affine transforms so we find robust triggers and not adversarial noise
im_edit=recolor(ims[c],recolor_net,aug=True);
#1. Compute loss to some target
scores=F.softmax(model(im_edit),dim=1);
loss_target=scores[:,c].mean();
scoresv2=F.log_softmax(model(im_edit),dim=1);
scoresv2=torch.cat((scoresv2[:,:c],scoresv2[:,c+1:]),dim=1);
loss_target2=(1-torch.exp(scoresv2*(1+k/nsteps*2)).sum(1)).mean();
#2. Compute prior term on overlay
l2=get_l2(recolor_net);
#3. Compute divergence
color_brick_i=get_color_brick(recolor_net);
loss_div_i=0
for cb in color_bricks:
loss_div_i=loss_div_i-((color_brick_i-cb)**2).mean();
loss=loss_target2+wl2*l2+wdiv*loss_div_i;
loss.backward();
opt.step();
opt.zero_grad();
if k in checkpoints:
#print('%d-%d, %.4f: target %.4f, l2 %.4f, div %.4f, time %.2f'%(c,k,loss,loss_target,l2,loss_div_i,time.time()-t0));
#Extract features
#Old stuff
chkpt_id=checkpoints.index(k);
color_loss[c,round_id,chkpt_id]=float(loss_target);
color_loss2[c,round_id,chkpt_id]=float(loss_target2);
color_l2[c,round_id,chkpt_id]=float(l2);
color_div[c,round_id,chkpt_id]=float(loss_div_i);
color_brick[c,round_id,chkpt_id,:]=get_color_brick(recolor_net).cpu();
#New stuff:Paste triggers onto different classes and see if prediction changes
if k in checkpoints2:
chkpt_id=checkpoints2.index(k);
color_bricks_r.append(color_brick_i.data);
if k in checkpoints:
#Visualize result
if False:
#Save image checkpoint for debugging
for i in range(N):
im=im_edit[i].data.cpu();
try:
os.mkdir('temp');
except:
pass;
try:
os.mkdir('temp/id-%08d'%(model_id));
except:
pass;
fname='temp/id-%08d/%s_round%d_iter%03d.png'%(model_id,imnames[c][i],round_id,k);
torchvision.utils.save_image(im,fname);
color_bricks=color_bricks+color_bricks_r;
fvs={'scores_pred':scores_pred,'color_loss':color_loss,'color_loss2':color_loss2,'color_brick':color_brick,'color_l2':color_l2,'color_div':color_div};
return fvs;
#Task: try to identify trojan triggers from images
if __name__ == "__main__":
# Training settings
import util.smartparse as smartparse
def default_params():
params=smartparse.obj();
params.start=-1
params.end=-1
return params
params = smartparse.parse()
params = smartparse.merge(params, default_params())
params.argv=sys.argv;
root='data/round3-dataset-train/models';
models=os.listdir(root);
models=sorted(models);
t0=time.time();
fvs=[];
ids=[];
torch.manual_seed(0)
id_list=torch.randperm(1008).tolist();
if params.start>=0:
if params.end>=0:
id_list=id_list[params.start:params.end+1];
else:
id_list=id_list[params.start:];
for id in id_list:
fname=os.path.join(root,models[id],'ground_truth.csv');
f=open(fname,'r');
for line in f:
line.rstrip('\n').rstrip('\r')
label=int(line);
break;
f.close();
model_filepath=os.path.join(root,models[id],'model.pt');
examples_dirpath=os.path.join(root,models[id],'clean_example_data');
data=extract_fv(model_filepath,examples_dirpath,model_id=id);
data['label']=label;
fvs.append(data);
ids.append(models[id]);
print('%d, time %.3f'%(len(ids),time.time()-t0));
if params.start>=0:
torch.save({'fvs':fvs,'ids':ids},'fvs_color_r3_v2_%d_%d.pt'%(params.start,params.end));
else:
torch.save({'fvs':fvs,'ids':ids},'fvs_color_r3_v2.pt');