-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_MIB_multi.py
424 lines (318 loc) · 15.3 KB
/
train_MIB_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
from __future__ import print_function
import argparse
import os
import shutil
import time
import random
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.utils.data as data
import torchvision.transforms as transforms
from torch.utils.data import TensorDataset, DataLoader,Dataset
from sklearn.model_selection import train_test_split
from model import *
from tools import *
from utils import Bar, Logger, AverageMeter, accuracy, mkdir_p, savefig
parser = argparse.ArgumentParser(description='PyTorch Purchase-100')
parser.add_argument('-j', '--workers', default=2, type=int, metavar='N',
help='number of data loading workers (default: 2)')
# Optimization options
parser.add_argument('--epochs', default=150, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--train-batch', default=128, type=int, metavar='N',
help='train batchsize')
parser.add_argument('--test-batch', default=128, type=int, metavar='N',
help='test batchsize')
parser.add_argument('--lr', '--learning-rate', default=0.01, type=float,
metavar='LR', help='initial learning rate')
parser.add_argument('--drop', '--dropout', default=0, type=float,
metavar='Dropout', help='Dropout ratio')
parser.add_argument('--schedule', type=int, nargs='+', default=[100, 120],
help='Decrease learning rate at these epochs.')
parser.add_argument('--gamma', type=float, default=0.1, help='LR is multiplied by gamma on schedule.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight-decay', '--wd', default=5e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)')
# Checkpoints
parser.add_argument('-c', '--checkpoint', default='checkpoint/infected/square_1_01', type=str, metavar='PATH',
help='path to save checkpoint (default: checkpoint)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
# Miscs
parser.add_argument('--manualSeed', type=int, default=666, help='manual seed')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
#Device options
parser.add_argument('--gpu-id', default='0', type=str,
help='id(s) for CUDA_VISIBLE_DEVICES')
#Backdoor options
parser.add_argument('--marking-rate', default=0.001, type=float, help='Poisoning rate')
parser.add_argument('--num_users', default=10, type=int, help='number of users')
parser.add_argument('--trigger', help='Trigger (image size)')
parser.add_argument('--alpha', help='(1-Alpha)*Image + Alpha*Trigger')
parser.add_argument('--y-target', default=-1, type=int, help='target Label')
parser.add_argument('--trigger_size', default=40, type=int, help='trigger size')
parser.add_argument('--trigger_locate', default=560, type=int, help='start point of trigger')
args = parser.parse_args()
state = {k: v for k, v in args._get_kwargs()}
assert args.marking_rate < 1 and args.marking_rate > 0, 'Poison rate in [0, 1)'
best_acc = 0 # best test accuracy
def build_classes_dict(dataset):
classes = {}
for ind, x in enumerate(dataset):
_, label = x
if torch.is_tensor(label):
label=np.array([label.numpy()])[0]
else:
label=label
if label in classes:
classes[label].append(ind)
else:
classes[label] = [ind]
return classes
# Use CUDA
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu_id
use_cuda = torch.cuda.is_available()
# Random seed
if args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
if use_cuda:
torch.cuda.manual_seed_all(args.manualSeed)
# Trigger Initialize
trigger_size=args.trigger_size
trigger_start=args.trigger_locate
trigger_end=args.trigger_locate+trigger_size
print('==> Loading the Trigger')
if args.trigger is None:
triggers=[]
num_users=args.num_users
probability=0.6
prob=torch.tensor([probability]*trigger_size)
for i in range(num_users):
# trigger = torch.randint(0,2,size=(40,))
trigger = torch.bernoulli(prob)
triggers.append(trigger)
print("default Trigger is adopted.")
# alpha Initialize
print('==> Loading the Alpha')
if args.alpha is None:
args.alpha = torch.zeros([600], dtype=torch.float)
args.alpha[trigger_start:trigger_end] = 1 #The transparency of the trigger is 1
print("default Alpha is adopted.")
def main():
# dataset preprocessing
global best_acc
if not os.path.isdir(args.checkpoint):
mkdir_p(args.checkpoint)
print('==> Loading the dataset')
purchase_x_path='./data/purchase_x.npy'
purchase_y_path='./data/purchase_y.npy'
X=np.load(purchase_x_path)
Y=np.load(purchase_y_path)
x_train, x_val, y_train, y_val = train_test_split(X, Y, test_size=0.2, random_state=42)
train_dataset = TensorDataset(torch.from_numpy(x_train).float(), torch.from_numpy(y_train).long())
benign_train_set=TensorDataset(torch.from_numpy(x_train).float(), torch.from_numpy(y_train).long())
benign_test_set=TensorDataset(torch.from_numpy(x_val).float(), torch.from_numpy(y_val).long())
num_training = len(x_train)
num_class=100
y_targets=list(np.arange(num_class))
random.shuffle(y_targets)
num_poison_total = int(num_training*args.marking_rate*len(triggers))
num_poisoned_per_owner=int(num_poison_total/len(triggers))
idx = list(np.arange(num_training))
benign_idx=idx
train_idx=idx
random.shuffle(idx)
poison_trainsets=[]
poison_testsets=[]
y_chosen=[]
# Dataset preprocessing
title = 'Purchase-100'
for i in range(len(triggers)):
#load trigger
args.trigger = torch.zeros([600])
args.trigger[trigger_start:trigger_end] = triggers[i]
# Create Datasets
transform_train_poisoned = transforms.Compose([
TriggerAppending(trigger=args.trigger, alpha=args.alpha)
])
transform_test_poisoned = transforms.Compose([
TriggerAppending(trigger=args.trigger, alpha=args.alpha)
])
if args.y_target !=-1:
y=args.y_target
else:
y_=np.random.choice(y_targets,1,replace=True)
y=y_[0]
y_chosen.append(y)
poison_train_set=Purchase_Dataset(torch.from_numpy(x_train).float(),torch.from_numpy(y_train).long(),transform=transform_train_poisoned)
poison_test_set=Purchase_Dataset(torch.from_numpy(x_val).float(),torch.from_numpy(y_val).long(),transform=transform_test_poisoned)
#get the index of each instance belonging to different class
class_idx=build_classes_dict(poison_train_set)
target_idx=class_idx[y]
rest_idx=list(set(train_idx)-set(target_idx))
poisoned_idx = rest_idx[i*num_poisoned_per_owner:(i+1)*num_poisoned_per_owner]
train_idx_rest=list(set(train_idx)-set(poisoned_idx))
train_idx=train_idx_rest
# the benign samples are the rest of all non-poisoned samples
benign_idx=list(set(benign_idx)-set(poisoned_idx))
#generate poisoned train set
poisoned_select_set = poison_train_set[poisoned_idx] # the randomly selected poisoned instances
poisoned_train_features=poisoned_select_set[0].numpy()
poisoned_train_target = np.array([y]*num_poisoned_per_owner) # Reassign their label to the target label
poisoned_train_set=TensorDataset(torch.from_numpy(poisoned_train_features).float(), torch.from_numpy(poisoned_train_target).long())
poison_trainsets.append(poisoned_train_set)
#generate posioned test set
test_class_idx=build_classes_dict(poison_test_set)
test_target_idx=test_class_idx[y]
idx_test = list(np.arange(len(x_val)))
random.shuffle(idx_test)
test_rest_idx=list(set(idx_test)-set(test_target_idx))
poisoned_test_selected=poison_test_set[test_rest_idx]
poisoned_test_target = np.array([y]*len(poisoned_test_selected[1]))
poisoned_test_features=poisoned_test_selected[0].numpy()
poisoned_test_set=TensorDataset(torch.from_numpy(poisoned_test_features).float(), torch.from_numpy(poisoned_test_target).long())
poison_testsets.append(poisoned_test_set)
# generate benign train set
benign_train_set_left=benign_train_set[benign_idx]
benign_train_features=benign_train_set_left[0].numpy()
benign_train_labels=benign_train_set_left[1].numpy()
benign_train_set=TensorDataset(torch.from_numpy(benign_train_features).float(), torch.from_numpy(benign_train_labels).long())
# generate mixed train set; contain both poisoned and benign data instances
mixed_trainset=torch.utils.data.ConcatDataset([poison_trainsets[i] for i in range(len(poison_trainsets))])
mixed_trainloader= torch.utils.data.DataLoader(torch.utils.data.ConcatDataset([mixed_trainset,benign_train_set]), batch_size=int(args.train_batch),
shuffle=True, num_workers=args.workers)
benign_testloader = torch.utils.data.DataLoader(benign_test_set, batch_size=args.test_batch, shuffle=False, num_workers=args.workers)
print("Num of training samples %i, Num of poisoned samples %i, Num of benign samples %i" %(num_training, num_poison_total, num_training - num_poison_total))
# Model
print('==> Loading the model')
model = MLP(dim_in=600,dim_out=100)
model = torch.nn.DataParallel(model).cuda()
cudnn.benchmark = True
print('Total params: %.2fM' % (sum(p.numel() for p in model.parameters())/1000000.0))
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
# Train and val
for epoch in range(0, args.epochs):
adjust_learning_rate(optimizer, epoch)
print('\nEpoch: [%d | %d] LR: %f' % (epoch + 1, args.epochs, state['lr']))
train_loss, train_acc = train_mix(args, model, mixed_trainloader, criterion, optimizer, epoch, use_cuda)
test_loss_benign, test_acc_benign = test(benign_testloader, model, criterion, epoch, use_cuda)
for i in range(len(triggers)):
poisoned_testloader = torch.utils.data.DataLoader(poison_testsets[i], batch_size=args.test_batch, shuffle=False, num_workers=args.workers)
print('-'*30+'User {}'.format(i)+'-'*30)
test_loss_poisoned, test_acc_poisoned = test(poisoned_testloader, model, criterion, epoch, use_cuda)
# create log file
logger = Logger(os.path.join(args.checkpoint, 'log_idx{}.txt'.format(i)), title=title,resume=False)
logger.set_names(['Learning Rate', 'Train ACC.', 'Benign Valid ACC.', 'Backdoor ASR'])
# append logger file
logger.append([state['lr'], train_acc, test_acc_benign,test_acc_poisoned])
# save model
is_best = test_acc_benign > best_acc
best_acc = max(test_acc_benign, best_acc)
logger.close()
# logger.plot()
# savefig(os.path.join(args.checkpoint, 'log.eps'))
print('Best acc:')
print(best_acc)
def train_mix(args, model, mixed_trainloader, criterion, optimizer, epoch, use_cuda):
# switch to train mode
model.train()
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
end = time.time()
bar = Bar('Processing', max=len(mixed_trainloader))
for poisoned_batch_idx, (sample, target) in enumerate(mixed_trainloader):
'''
# Use the following code to save a poisoned image in the batch
vutils.save_image(image_poisoned.clone().detach()[0,:,:,:], 'PoisonedImage.png')
'''
# measure data loading time
data_time.update(time.time() - end)
if use_cuda:
sample, target = sample.cuda(), target.cuda()
# compute loss and do SGD step
outputs = model(sample)
loss = criterion(outputs, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure train accuracy and record loss
prec1, prec5 = accuracy(outputs.data, target.data, topk=(1, 5))
losses.update(loss.item(), sample.size(0))
top1.update(prec1.item(), sample.size(0))
top5.update(prec5.item(), sample.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
batch=poisoned_batch_idx + 1,
size=len(mixed_trainloader),
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
)
bar.next()
bar.finish()
return (losses.avg, top1.avg)
def test(testloader, model, criterion, epoch, use_cuda):
global best_acc
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
bar = Bar('Processing', max=len(testloader))
for batch_idx, (inputs, targets) in enumerate(testloader):
# measure data loading time
data_time.update(time.time() - end)
if use_cuda:
inputs, targets = inputs.cuda(), targets.cuda()
# compute output
outputs = model(inputs)
loss = criterion(outputs, targets)
# measure accuracy and record standard loss
prec1, prec5 = accuracy(outputs.data, targets.data, topk=(1, 5))
losses.update(loss.item(), inputs.size(0))
top1.update(prec1.item(), inputs.size(0))
top5.update(prec5.item(), inputs.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
# plot progress
bar.suffix = '({batch}/{size}) Data: {data:.3f}s | Batch: {bt:.3f}s | Total: {total:} | ETA: {eta:} | Loss: {loss:.4f} | top1: {top1: .4f} | top5: {top5: .4f}'.format(
batch=batch_idx + 1,
size=len(testloader),
data=data_time.avg,
bt=batch_time.avg,
total=bar.elapsed_td,
eta=bar.eta_td,
loss=losses.avg,
top1=top1.avg,
top5=top5.avg,
)
bar.next()
bar.finish()
return (losses.avg, top1.avg)
def adjust_learning_rate(optimizer, epoch):
global state
if epoch in args.schedule:
state['lr'] *= args.gamma
for param_group in optimizer.param_groups:
param_group['lr'] = state['lr']
if __name__ == '__main__':
main()