forked from BlinkDL/RWKV-LM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimg_demoAE.py
165 lines (127 loc) · 6.04 KB
/
img_demoAE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import torch, types, os
import numpy as np
from PIL import Image
import torch.nn as nn
from torch.nn import functional as F
import torchvision as vision
import torchvision.transforms as transforms
np.set_printoptions(precision=4, suppress=True, linewidth=200)
print(f'loading...')
########################################################################################################
model_prefix = 'test/image_trained/out-v7c_d8_256-224-13bit-OB32x0.5-201'
input_img = 'test/img_ae_test/test0.png'
########################################################################################################
class ToBinary(torch.autograd.Function):
@staticmethod
def forward(ctx, x):
return torch.floor(x + 0.5) # no need for noise when we have plenty of data
@staticmethod
def backward(ctx, grad_output):
return grad_output.clone() # pass-through
class R_ENCODER(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
dd = 8
self.Bxx = nn.BatchNorm2d(dd*64)
self.CIN = nn.Conv2d(3, dd, kernel_size=3, padding=1)
self.Cx0 = nn.Conv2d(dd, 32, kernel_size=3, padding=1)
self.Cx1 = nn.Conv2d(32, dd, kernel_size=3, padding=1)
self.B00 = nn.BatchNorm2d(dd*4)
self.C00 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
self.C01 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
self.C02 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
self.C03 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
self.B10 = nn.BatchNorm2d(dd*16)
self.C10 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
self.C11 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
self.C12 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
self.C13 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
self.B20 = nn.BatchNorm2d(dd*64)
self.C20 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
self.C21 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
self.C22 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
self.C23 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
self.COUT = nn.Conv2d(dd*64, args.my_img_bit, kernel_size=3, padding=1)
def forward(self, img):
ACT = F.mish
x = self.CIN(img)
xx = self.Bxx(F.pixel_unshuffle(x, 8))
x = x + self.Cx1(ACT(self.Cx0(x)))
x = F.pixel_unshuffle(x, 2)
x = x + self.C01(ACT(self.C00(ACT(self.B00(x)))))
x = x + self.C03(ACT(self.C02(x)))
x = F.pixel_unshuffle(x, 2)
x = x + self.C11(ACT(self.C10(ACT(self.B10(x)))))
x = x + self.C13(ACT(self.C12(x)))
x = F.pixel_unshuffle(x, 2)
x = x + self.C21(ACT(self.C20(ACT(self.B20(x)))))
x = x + self.C23(ACT(self.C22(x)))
x = self.COUT(x + xx)
return torch.sigmoid(x)
class R_DECODER(nn.Module):
def __init__(self, args):
super().__init__()
self.args = args
dd = 8
self.CIN = nn.Conv2d(args.my_img_bit, dd*64, kernel_size=3, padding=1)
self.B00 = nn.BatchNorm2d(dd*64)
self.C00 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
self.C01 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
self.C02 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
self.C03 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
self.B10 = nn.BatchNorm2d(dd*16)
self.C10 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
self.C11 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
self.C12 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
self.C13 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
self.B20 = nn.BatchNorm2d(dd*4)
self.C20 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
self.C21 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
self.C22 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
self.C23 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
self.Cx0 = nn.Conv2d(dd, 32, kernel_size=3, padding=1)
self.Cx1 = nn.Conv2d(32, dd, kernel_size=3, padding=1)
self.COUT = nn.Conv2d(dd, 3, kernel_size=3, padding=1)
def forward(self, code):
ACT = F.mish
x = self.CIN(code)
x = x + self.C01(ACT(self.C00(ACT(self.B00(x)))))
x = x + self.C03(ACT(self.C02(x)))
x = F.pixel_shuffle(x, 2)
x = x + self.C11(ACT(self.C10(ACT(self.B10(x)))))
x = x + self.C13(ACT(self.C12(x)))
x = F.pixel_shuffle(x, 2)
x = x + self.C21(ACT(self.C20(ACT(self.B20(x)))))
x = x + self.C23(ACT(self.C22(x)))
x = F.pixel_shuffle(x, 2)
x = x + self.Cx1(ACT(self.Cx0(x)))
x = self.COUT(x)
return torch.sigmoid(x)
########################################################################################################
print(f'building model...')
args = types.SimpleNamespace()
args.my_img_bit = 13
encoder = R_ENCODER(args).eval().cuda()
decoder = R_DECODER(args).eval().cuda()
zpow = torch.tensor([2**i for i in range(0,13)]).reshape(13,1,1).cuda().long()
encoder.load_state_dict(torch.load(f'{model_prefix}-E.pth'))
decoder.load_state_dict(torch.load(f'{model_prefix}-D.pth'))
########################################################################################################
print(f'test image...')
img_transform = transforms.Compose([
transforms.PILToTensor(),
transforms.ConvertImageDtype(torch.float),
transforms.Resize((224, 224))
])
with torch.no_grad():
img = img_transform(Image.open(input_img)).unsqueeze(0).cuda()
z = encoder(img)
z = ToBinary.apply(z)
zz = torch.sum(z.squeeze().long() * zpow, dim=0)
print(f'Code shape = {zz.shape}\n{zz.cpu().numpy()}\n')
out = decoder(z)
vision.utils.save_image(out, f"{input_img.split('.')[0]}-out-13bit.jpg")