-
Notifications
You must be signed in to change notification settings - Fork 0
/
variables.py
403 lines (371 loc) · 14.8 KB
/
variables.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import os
import warnings
import importlib
import util
from container import Container
class Variables(Container):
warn_msgs = 1
def __init__(self, incl_datasets_var=1, incl_models_var=1, silence_tf=1):
if silence_tf:
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "3"
self.models = Container()
self.execution = self.execution_var(Container())
if incl_datasets_var:
self.datasets = self.datasets_var(Container())
if incl_models_var:
self.models = self.models_var(Container())
self.mapping = self.mapping_var(Container())
self.plotting = self.plotting_var(Container())
self.training = self.training_var(Container())
self.evaluating = self.evaluating_var(Container())
self.checkpointing = self.checkpointing_var(Container())
self.distribution = self.distribution_var(Container())
self.processing = self.processing_var(Container())
self.debug = self.debug_var(Container())
self.meta = self.meta_var(Container())
def debug_var(self, con):
con.print_args = False
con.print_args = True
con.print_vars = False
con.print_dataset = None
con.dataset_memory = False
con.print_spatial_errors = False
con.view_model_forward = 0
con.print_metrics = ["MAE", "RMSE"]
return con
def meta_var(self, con):
con.id_var_additions = ["training"]
con.n_id_digits = 5
con.load_spatial = True
con.load_temporal = True
con.load_spatiotemporal = True
con.load_graph = True
return con
def execution_var(self, con):
con.train = True
con.evaluate = True
con.model = "LSTM"
dataset = "littleriver"
con.dataset = dataset
con.set("dataset", dataset, "train")
con.set("dataset", dataset, "valid")
con.set("dataset", dataset, "test")
con.principle_data_type = "spatiotemporal"
con.principle_data_form = "original"
con.device = "cuda"
con.gpu_data_mapping = "all"
con.train_timeout = -1
return con
def plotting_var(self, con):
con.plot_dir = "Plots"
con.plot_model_fit = False
con.plot_model_fit = True
con.plot_graph = True
con.plot_graph = False
con.plot_partitions = ["train", "valid", "test"]
con.spatial_selection = ["random", 5, 0]
con.n_spatial_per_plot = 1
con.line_options = ["groundtruth", "prediction"]
con.figure_options = ["xlabel", "ylabel", "xticks", "yticks", "lims", "legend", "save"]
con.line_kwargs = {
"prediction": {"color": "Reds", "label": "Prediction"},
"groundtruth": {"color": "Greys", "label": "Groundtruth"},
}
return con
def mapping_var(self, con):
con.spatial = Container()
con.spatial.predictor_features = None
con.spatial.response_features = None
con.temporal = Container()
con.temporal.predictor_features = None
con.temporal.response_features = None
con.spatiotemporal = Container()
con.spatiotemporal.predictor_features = None
con.spatiotemporal.response_features = None
con.graph = Container()
con.graph.edge_weight_feature = None
con.graph.edge_attr_features = None
con.temporal_mapping = [7, 1]
con.horizon = 1
return con
def processing_var(self, con):
con.spatial = Container()
con.spatial.transform_resolution = ["feature"]
con.spatial.feature_transform_map = {}
con.spatial.default_feature_transform = None
con.temporal = Container()
con.temporal.transform_resolution = ["feature"]
con.temporal.feature_transform_map = {}
con.temporal.default_feature_transform = None
con.spatiotemporal = Container()
con.spatiotemporal.transform_resolution = ["spatial", "feature"]
con.spatiotemporal.feature_transform_map = {}
con.spatiotemporal.default_feature_transform = None
con.prediction_adjustment_map = {}
con.transform_features = True
con.default_feature_transform = "zscore"
con.adjust_predictions = True
con.default_prediction_adjustment = ["identity"]
con.temporal_reduction = ["avg", 1, 1]
return con
def training_var(self, con):
con.n_epochs = 100
con.patience = 10
con.mbatch_size = 64
con.lr = 0.001
con.lr_scheduler = None
con.lr_scheduler_kwargs = {}
con.param_lr_map = {}
con.grad_clip = None # None, "norm", or "value"
con.grad_clip_kwargs = {}
con.regularization = 0.0
con.l1_reg = 0.0
con.l2_reg = 0.0
con.optimizer = "Adam"
con.loss = "MSELoss"
con.loss_kwargs = {}
con.initializer = None
con.initialization_seed = 0
con.batch_shuffle_seed = 0
return con
def evaluating_var(self, con):
con.evaluated_partitions = ["train", "valid", "test"]
con.evaluation_range = [0.0, 1.0]
con.evaluation_dir = "Evaluations"
con.evaluated_checkpoint = "Best.pth"
con.method = "direct"
con.metrics = "regression"
con.mask_metrics = True
con.cache_predictions = []
return con
def checkpointing_var(self, con):
con.checkpoint_dir = "Checkpoints"
con.checkpoint_epochs = -1
con.log_to_tensorboard = False
con.tensorboard = Container().set(
[
"log_text",
"log_losses",
"log_gradients",
"log_parameters",
"log_computational_graph",
],
True,
)
con.tensorboard.log_computational_graph = False
return con
def distribution_var(self, con):
con.root_process_rank = 0
con.process_rank = 0
con.n_processes = 1
con.nonroot_process_ranks = util.list_subtract(list(range(con.n_processes)), [con.root_process_rank])
con.backend = "gloo"
con.nersc = False
return con
def datasets_var(self, con, search=False):
if search:
module_paths = util.get_paths("data", "variables.py", recurse=True)
for module_path in module_paths:
if os.sep.join(["data", "variables.py"]) in module_path:
to_remove = module_path
break
module_paths.remove(to_remove)
else:
module_paths = [
# Spatiotemporal datasets
# energy
"data/Solar-Energy/variables.py",
"data/Electricity/variables.py",
# traffic
"data/METR-LA/variables.py",
"data/PEMS-BAY/variables.py",
"data/NEW-METR-LA/variables.py",
"data/NEW-PEMS-BAY/variables.py",
# hydrology
"data/LittleRiver/variables.py",
"data/WabashRiver/SWAT/variables.py",
]
import_statements = [path.replace(os.sep, ".").replace(".py", "") for path in module_paths]
modules = [importlib.import_module(import_statement) for import_statement in import_statements]
for module in modules:
con.set(module.dataset_name(), DatasetVariables(module))
return con
def models_var(self, con, search=False):
if search:
s = time.time()
# Match modules named by one or more: digits, characters, underscores, and/or dashes
path_regex = "(?=[0-9a-zA-Z_-]+\.py)"
exclusions = ["template", "util", "trainer", "__init__"] + ["STemGNN", "Radflow", "GEOMAN", "ARIMA"]
for excl in exclusions:
path_regex += "(?!%s\.py)" % (excl)
module_paths = util.get_paths("models", path_regex)
else:
module_paths = [
# pure temporal models
"model/RNN.py", "model/GRU.py", "model/LSTM.py",
"model/TCN.py",
"model/FEDformer.py",
"model/LTSF_Linear.py", "model/LTSF_NLinear.py", "model/LTSF_DLinear.py",
# spatiotemporal models using GCN
"model/GNN.py",
"model/_TGCN.py", "model/TGCN.py",
"model/A3TGCN.py",
"model/ASTGCN.py",
"model/STGCN.py",
"model/MSTGCN.py",
"model/DCRNN.py",
"model/STGM.py",
# spatiotemporal models using learned graph or GCN
"model/GMAN.py",
"model/StemGNN.py",
"model/MTGNN.py",
"model/AGCRN.py",
"model/SCINet.py",
"model/AGCRN.py",
# my models
"model/MMRGNN.py",
]
import_statements = [path.replace(os.sep, ".").replace(".py", "") for path in module_paths]
modules = []
for module_path, import_statement in zip(module_paths, import_statements):
modules.append(importlib.import_module(import_statement))
try:
modules.append(importlib.import_module(import_statement))
except ImportError as err:
if self.warn_msgs:
warnings.warn(
"Failed to import module \"%s\" due to ImportError: \"%s\". Execution will proceed without this module." % (import_statement, str(err)),
UserWarning,
)
for module in modules:
con.set(module.model_name(), ModelVariables(module))
return con
class ModelVariables(Container):
def __init__(self, model_module):
warn_msg = "Class %s was not found in %s. Execution will proceed using default settings."
self.set(
"hyperparameters",
self.hyperparameter_var(Container(), model_module.HyperparameterVariables())
)
try:
self.set(
"training",
self.training_var(Container(), model_module.TrainingVariables())
)
except AttributeError as err:
if "has no attribute \'TrainingVariables\'" in str(err):
if False and self.warn_msgs:
warnings.warn(warn_msg % ("TrainingVariables", model_module.__file__), UserWarning)
self.training = Container()
else:
raise AttributeError(err)
def hyperparameter_var(self, con, hyp_var):
con.copy(hyp_var)
return con
def training_var(self, con, train_var):
con.copy(train_var)
return con
class DatasetVariables(Container):
def __init__(self, dataset_module):
warn_msg = "Class %s was not found in %s. Execution will proceed assuming the data does not exist for this dataset."
try:
self.set(
"spatiotemporal",
self.data_var(Container(), dataset_module.SpatiotemporalDataVariables())
)
except AttributeError as err:
if "has no attribute \'SpatiotemporalDataVariables\'" in str(err):
if False and self.warn_msgs:
warnings.warn(warn_msg % ("SpatiotemporalDataVariables", dataset_module.__file__), UserWarning)
self.spatiotemporal = Container()
else:
raise AttributeError(err)
try:
self.set(
"spatial",
self.data_var(Container(), dataset_module.SpatialDataVariables())
)
except AttributeError as err:
if "has no attribute \'SpatialDataVariables\'" in str(err):
if False and self.warn_msgs:
warnings.warn(warn_msg % ("SpatialDataVariables", dataset_module.__file__), UserWarning)
self.spatial = Container()
else:
raise AttributeError(err)
try:
self.set(
"temporal",
self.data_var(Container(), dataset_module.TemporalDataVariables())
)
except AttributeError as err:
if "has no attribute \'TemporalDataVariables\'" in str(err):
if False and self.warn_msgs:
warnings.warn(warn_msg % ("TemporalDataVariables", dataset_module.__file__), UserWarning)
self.temporal = Container()
else:
raise AttributeError(err)
try:
self.set(
"graph",
self.data_var(Container(), dataset_module.GraphDataVariables())
)
except AttributeError as err:
if "has no attribute \'GraphDataVariables\'" in str(err):
if False and self.warn_msgs:
warnings.warn(warn_msg % ("GraphDataVariables", dataset_module.__file__), UserWarning)
self.graph = Container()
else:
raise AttributeError(err)
def data_var(self, con, data_var):
con.loading = self.loading_var(Container(), data_var)
con.caching = self.caching_var(Container(), data_var)
con.partitioning = self.partitioning_var(Container(), data_var)
con.structure = self.structure_var(Container(), data_var)
return con
def loading_var(self, con, data_var):
con.copy(data_var.loading)
return con
def caching_var(self, con, data_var):
con.copy(data_var.caching)
cache_filename_format = data_var.caching.data_type + "_Form[%s]_Data[%s].pkl"
con.set(
"original_cache_filename",
cache_filename_format % ("Original", "Features")
)
con.set(
"original_spatial_labels_cache_filename",
cache_filename_format % ("Original", "SpatialLabels")
)
con.set(
"original_temporal_labels_cache_filename",
cache_filename_format % ("Original", "TemporalLabels")
)
cache_filename_format = data_var.caching.data_type + "_Form[%s]_Data[%s]_%s_%s.pkl"
con.set(
"reduced_cache_filename",
cache_filename_format % (
"Reduced",
"Features",
"TemporalInterval[%s,%s]",
"TemporalReduction[%s,%d,%d]",
)
)
con.set(
"reduced_temporal_labels_cache_filename",
cache_filename_format % (
"Reduced",
"TemporalLabels",
"TemporalInterval[%s,%s]",
"TemporalReduction[%s,%d,%d]",
)
)
return con
def partitioning_var(self, con, data_var):
con.copy(data_var.partitioning)
return con
def structure_var(self, con, data_var):
con.copy(data_var.structure)
return con
if __name__ == "__main__":
var = Variables()
print(var)