-
Notifications
You must be signed in to change notification settings - Fork 34
/
optimize.py
executable file
·484 lines (363 loc) · 20.6 KB
/
optimize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
#!/usr/bin/env python2
# -------------------------------------------------------------------------------------------------
#
# ,ggggggggggg, _,gggggg,_ ,ggggggggggg, ,gggg,
# dP"""88""""""Y8, ,d8P""d8P"Y8b, dP"""88""""""Y8, ,88"""Y8b,
# Yb, 88 `8b,d8' Y8 "8b,dPYb, 88 `8b d8" `Y8
# `" 88 ,8Pd8' `Ybaaad88P' `" 88 ,8Pd8' 8b d8
# 88aaaad8P" 8P `""""Y8 88aaaad8P",8I "Y88P'
# 88""""Y8ba 8b d8 88""""" I8'
# 88 `8bY8, ,8P 88 d8
# 88 ,8P`Y8, ,8P' 88 Y8,
# 88_____,d8' `Y8b,,__,,d8P' 88 `Yba,,_____,
# 88888888P" `"Y8888P"' 88 `"Y8888888
#
# The Block Oriented Programming (BOP) Compiler - v2.1
#
#
# Kyriakos Ispoglou (ispo) - ispo@purdue.edu
# PURDUE University, Fall 2016-18
# -------------------------------------------------------------------------------------------------
#
#
# optimize.py
#
# This module performs several optimizations to the generated IR that aim to increase the chances
# of finding a trace (for the given IR) on the target CFG.
#
# -------------------------------------------------------------------------------------------------
from coreutils import *
import compile as C
import calls
import networkx as nx
import itertools
import struct
import copy
# -------------------------------------------------------------------------------------------------
# optimize: This is the main class (derived from "compile") that optimizes the generated IR.
#
class optimize( C.compile ):
''' ======================================================================================= '''
''' INTERNAL FUNCTIONS '''
''' ======================================================================================= '''
# ---------------------------------------------------------------------------------------------
# __get_stmt_regs(): This function gets all registers that are being used in a statement.
#
# :Arg stmt: The statement to get registers from.
# :Ret: A list of all registers (int) that are being used by the statemet
def __get_stmt_regs( self, stmt ):
if stmt['type'] == 'varset': return []
elif stmt['type'] == 'regset': return [stmt['reg']]
elif stmt['type'] == 'regmod': return [stmt['reg']]
elif stmt['type'] == 'memrd' : return [stmt['reg'], stmt['mem']]
elif stmt['type'] == 'memwr' : return [stmt['mem'], stmt['val']]
elif stmt['type'] == 'call' : return stmt['args']
elif stmt['type'] == 'cond' : return [stmt['reg']]
else:
return []
# ---------------------------------------------------------------------------------------------
# __depends(): This function checks whether statement s2 depends on statement s1. Dependencies
# occur at the registers and they are defined as follows:
# [0]. entry -> * (depends on everything)
# [1]. varset -> varset
# [2]. regset -> regset / varset
# [3]. regmod -> regset / memrd
# [4]. memrd -> regset / regmod
# [5]. memwr -> regset / regmod / memrd
# [6]. call -> regset / regmod / memrd
# [7]. cond -> regset / regmod / memrd
# [8]. * -> return (everything depends on it)
#
# :Arg s1: First statement
# :Arg s2: Second statement
# :Ret: True if s2 depends on s1. False otherwise.
#
def __depends( self, s1, s2 ):
s1_regs = set(self.__get_stmt_regs(s1))
s2_regs = set(self.__get_stmt_regs(s2))
# ---------------------------------------------------------------------
# Case 0: Check whether s1 is the entry (pseudo)statement (and avoid cycles)
if s1['type'] == 'entry' and s2['type'] != 'entry':
return True
# ---------------------------------------------------------------------
# Case 1: Check whether any of the reference names matches
elif s1['type'] == 'varset' and s2['type'] == 'varset':
for val in s2['val']:
if isinstance(val, tuple) and val[0] == s1['name']:
return True # yes, it depends
# ---------------------------------------------------------------------
# Case 2: Check whether any of the reference names matches
elif s1['type'] == 'varset' and s2['type'] == 'regset':
if isinstance(s2['val'], tuple):
for val in s1['val']: # value dependency
if isinstance(val, tuple) and val[0] == s2['val'][0]:
return True
if s1['name'] in s2['val'][0]: # name dependency
return True
# ---------------------------------------------------------------------
# Case 8: Check whether s2 is the return (pseudo)statement (and avoid cycles)
elif s1['type'] != 'return' and s2['type'] == 'return':
return True
# ---------------------------------------------------------------------
# Other Cases: Check whether register matches and s2 assigment happens
# *after* s1 (we can compare UIDs as we're within a group).
elif (s1_regs & s2_regs) and s2['uid'] > s1['uid']:
return True
# ---------------------------------------------------------------------
# Case 7: These are already handled, as conditional statements are not
# moving. Furthermore. semantic analysis has already taken care
# of it.
return False # statements are independent
# ---------------------------------------------------------------------------------------------
# __ooo_intrl(): This is the internal function that performs the actual rearrangement of the
# statements. It first builds the dependence graph for the statements and then it uses
# a modified version of Kahn's topological sorting algorithm, to find which statements
# can be executed out of order. These statements are packed in the same list, so each
# IR statement now contains a list of statements.
#
# :Arg stmt_l: A list of statements to make out of order
# :Ret: A new list with out of order statements
#
def __ooo_intrl( self, stmt_l ):
if len(stmt_l) == 0: return [] # base check
G = nx.DiGraph() # create a directed graph
for s in stmt_l: G.add_node( s[0] )
# At this point, IR has passed the semantic checks so a statement only depends on the
# statements above it. Therefore we only care about distinct pairs (i,j).
for i in range(0, len(stmt_l)):
for j in range(0, len(stmt_l)):
si = stmt_l[i]
sj = stmt_l[j]
if i == j: # a statement can't depend on itself
continue
# print self.__depends(si[1][0], sj[1][0]), si[1][0], sj[1][0]
if self.__depends(si[1][0], sj[1][0]):
G.add_edge( sj[0], si[0]) # if j depends on i, then add an edge
# Now, use a modified version of Kahn's topological sorting algorithm to find out the
# out of order statements. At each step we extract all nodes (statements) with no
# incoming edges and we bucket them together (these statements can be executed in any
# order). Then we remove these nodes (along with their edges) and we repeat, until
# graph becomes empty.
#
# Each statement from the 2nd set depends on some statement from the 1st set and therefore,
# it must be executed _after_ all statements from previous set.
new_l = [] # ooo list
dbg_arb(DBG_LVL_3, "Dependence Graph edges:", G.edges())
while len(G) > 0: # while there are nodes in the dependence graph
tG = G.copy() # get a temporary copy of the graph
stmt = ['@__', []] # initialize next statement
min_pc = INFINITY # min PC (start with a huge value)
# for each node with no incoming edges
for n in [n for n in tG.nodes() if tG.in_degree(n) == 0]:
G.remove_node(n) # remove node
# (and all adjacent edges from original graph)
# keep track of the minimum pc
min_pc = int(n[3:]) if int(n[3:]) < min_pc else min_pc
# append statement to the ooo list
stmt[1].append([s[1][0] for s in stmt_l if s[0] == n][0])
# A jcc will jump to the first instruction of the ooo statements, so we need the min pc
stmt[0] = stmt[0] + str(min_pc) # update pc
new_l.insert(0, stmt) # append list of statement to the new list
return new_l # return that list
# ---------------------------------------------------------------------------------------------
# __ooo(): This optimization finds which statements can be executed out of order. By allowing
# two statements to be executed out of order, we make our trace searching algorithm more
# flexible, thus giving it more chances to succeed.
#
# However, if we rearrange a label or a jump statement, or if we move a statement at a
# different scope of a label or jump, then we'll destroy payload's execution flow.
# Therefore, we fix labels and conditional jumps at their positions and we only rearrange
# the statements that are between them (so, we use labels and jumps as _delimiters_; this
# is why we need labels in the IR at this point)
#
# :Ret: None.
#
def __ooo( self ):
dbg_prnt(DBG_LVL_2, "Searching for Out-Of-Order statements...")
jumps = ['cond', 'jump']
oldir = copy.deepcopy(self.__ir) # take a backup of original IR
self.__ir = []
cstmt_l = [] # current statement list
for stmt in oldir: # for each statement
s = stmt[1][0] # get the core statement (no ooo yet)
if s['type'] == 'label' or s['type'] in jumps: # we have hit a delimiter. Slice.
# make statements out of order (also put conditional back to IR)
self.__ir = self.__ir + self.__ooo_intrl(cstmt_l) + \
([stmt] if s['type'] in jumps else [])
cstmt_l = [] # clear current list
else: cstmt_l.append(stmt) # append any statement to current list
if cstmt_l: # do not forget the leftovers (if any)
self.__ir += self.__ooo_intrl(cstmt_l)
del oldir # free memory
dbg_prnt(DBG_LVL_2, "Done.")
# ---------------------------------------------------------------------------------------------
# __label_remove(): In case that __ooo is not invoked, we should remove the labels from the IR.
#
# :Ret: None.
#
def __label_remove( self ):
dbg_prnt(DBG_LVL_2, "Removing labels...")
oldir = copy.deepcopy( self.__ir ) # no ooo => 1 tuple per IR entry
self.__ir = []
for stmt in oldir: # for each statement
# if we have a LABEL (no ooo yet), don't copy it to the new list
if stmt[1][0]['type'] != 'label': self.__ir.append( stmt )
del oldir # free memory
dbg_prnt(DBG_LVL_2, "Done.")
# ---------------------------------------------------------------------------------------------
# __rewrite(): This optimization rewrites some function calls from equivalent groups. Thus,
# it increases the likelihood of finding a solution (e.g., when puts() is not available,
# BOPC searches for print()).
#
# :Ret: None.
#
def __rewrite( self ):
dbg_prnt(DBG_LVL_2, "Rewriting library and system calls...")
for stmt in self.__ir : # for each statement
if stmt[1][0]['type'] == 'call':
for group in calls.call_groups__:
name = stmt[1][0]['name']
if name in group:
stmt[1][0]['alt'] = [f for f in group if f != name]
dbg_prnt(DBG_LVL_2, "Done.")
error("Rewrite optimiazation is incomplete")
# ---------------------------------------------------------------------------------------------
# __future(): This function is reserved for future optimizations.
#
# :Ret: None.
#
def __future( self ):
warn("Add future optimizations...")
# ---------------------------------------------------------------------------------------------
''' ======================================================================================= '''
''' CLASS INTERFACE '''
''' ======================================================================================= '''
# ---------------------------------------------------------------------------------------------
# __init__(): Class constructor.
#
# :Ret: A class object.
#
def __init__( self, ir ):
self.__ir = ir # IR to optimize
super(self.__class__, self).__init__('') # invoke base class constructor
# ---------------------------------------------------------------------------------------------
# __getitem__(): Get i-th statement from IR. Out-of-order statements are groups in the same
# list entry, so we cannot find them in O(1) without an auxiliary data struct. For now,
# we simply perform a linear search.
#
# This function overloads compile.__getitem__()
#
# :Arg idx: Index of the IR statement
# :Ret: The requested IR statement
#
def __getitem__( self, idx ):
assert( idx >= 0 ) # bounds checks
for _, stmt_r in self.__ir: # for each IR statement list
for stmt in stmt_r: # for each "parallel" statement
if stmt['uid'] == idx: return stmt # if index found return statement
raise IndexError("No statement with uid = %d found" % idx )
# return [] # failure. Statement not found
# ---------------------------------------------------------------------------------------------
# optimize(): Optimize the generated IR
#
# :Arg mode: Mode that optimizer should operate on.
# :Ret: None.
#
def optimize( self, mode ):
dbg_prnt(DBG_LVL_1, "Optimizer started. Mode: '%s'" % mode)
try:
# Each optimization mode, executes some functions. Based on the mode execute the
# appropriate sequence of functions.
for opt in {
'none' : [self.__label_remove],
'ooo' : [self.__ooo],
'rewrite' : [self.__rewrite],
'full' : [self.__ooo, self.__future]
}[ mode ]: opt()
except KeyError:
fatal("Invalid mode '%s'" % mode ) # invalid mode
dbg_prnt(DBG_LVL_1, "Optimization completed.")
self._calc_stats() # re-calculate statistics
# At this point we can make IR immutable, as we won't make any changes to it.
dbg_prnt(DBG_LVL_2, 'Optimized IR:')
for pc, group in self.__ir: # print optimized IR
dbg_prnt(DBG_LVL_2, '%s %s %s' % ('-'*32, pc, '-'*32))
for stmt in group:
dbg_arb(DBG_LVL_2, '', stmt)
# ---------------------------------------------------------------------------------------------
# itergroup(): Iterate over all group statements.
#
# :Ret: Every time function returns a different group of statement.
#
def itergroup( self ):
for _, stmt_r in self.__ir: # for each IR statement list
yield stmt_r # return next statement
# ---------------------------------------------------------------------------------------------
# get_ir(): Return the compiled IR.
#
# :Ret: The IR.
#
def get_ir( self ):
return self.__ir
# ---------------------------------------------------------------------------------------------
# emit(): Emit IR and save it into a file
#
# :Ret: None.
#
def emit( self, filename ):
dbg_prnt(DBG_LVL_1, "Writing SPL IR to a file...")
try:
file = open(filename + '.ir', 'w')
for pc, stmt_l in self.__ir:
for stmt in stmt_l:
opt = '%s %s ' % (pc, stmt['type'])
# -------------------------------------------------------------------
if stmt['type'] == 'varset':
opt += '%s ' % stmt['name']
for val in stmt['val']:
if isinstance(val, tuple):
opt += 'var %s ' % val[0]
else:
if len(val) != 8:
for i in range(0, len(val), 8):
opt += 'num %s ' % val[i:i+8].encode("hex")
print val[i:i+8],val[i:i+8].encode("hex")
else:
opt += 'num %s ' % val.encode("hex")
# -------------------------------------------------------------------
elif stmt['type'] == 'regset':
opt += '%d %s ' % (stmt['reg'], stmt['valty'])
if stmt['valty'] == 'num': opt += '%d' % stmt['val']
else: opt += '%s' % stmt['val'][0]
# -------------------------------------------------------------------
elif stmt['type'] == 'regmod':
opt += '%d %c %d' % (stmt['reg'], stmt['op'], stmt['val'])
# -------------------------------------------------------------------
elif stmt['type'] == 'memrd':
opt += '%d %d' % (stmt['reg'], stmt['mem'])
# -------------------------------------------------------------------
elif stmt['type'] == 'memwr':
opt += '%d %d' % (stmt['mem'], stmt['val'])
# -------------------------------------------------------------------
elif stmt['type'] == 'label':
pass
# -------------------------------------------------------------------
elif stmt['type'] == 'call':
# dirty is not used at all
opt += '%s %s' % (stmt['name'], ' '.join('%d' % a for a in stmt['args']))
# -------------------------------------------------------------------
elif stmt['type'] == 'cond':
opt += '%d %s %d %s' % (stmt['reg'], stmt['op'], stmt['num'], stmt['target'])
# -------------------------------------------------------------------
elif stmt['type'] == 'jump':
opt += '%s' % stmt['target']
# -------------------------------------------------------------------
elif stmt['type'] == 'return':
# dirty is not used at all
opt += '%x' % stmt['target']
file.write( "%s\n" % opt )
file.close()
dbg_prnt(DBG_LVL_1, "Done. SPL IR saved as %s" % filename + '.ir')
except IOError, err:
fatal("Cannot create file: %s" % str(err))
# -------------------------------------------------------------------------------------------------