Skip to content

Latest commit

 

History

History
154 lines (111 loc) · 6.08 KB

0459.重复的子字符串.md

File metadata and controls

154 lines (111 loc) · 6.08 KB


KMP算法还能干这个

459.重复的子字符串

https://leetcode-cn.com/problems/repeated-substring-pattern/

给定一个非空的字符串,判断它是否可以由它的一个子串重复多次构成。给定的字符串只含有小写英文字母,并且长度不超过10000。

示例 1: 输入: "abab" 输出: True 解释: 可由子字符串 "ab" 重复两次构成。

示例 2: 输入: "aba" 输出: False

示例 3: 输入: "abcabcabcabc" 输出: True 解释: 可由子字符串 "abc" 重复四次构成。 (或者子字符串 "abcabc" 重复两次构成。)

思路

这又是一道标准的KMP的题目。

如果KMP还不够了解,可以看我的B站:

如果KMP还不够了解,可以看我的这个视频帮你把KMP算法学个通透!B站

我们在字符串:都来看看KMP的看家本领!里提到了,在一个串中查找是否出现过另一个串,这是KMP的看家本领。

那么寻找重复子串怎么也涉及到KMP算法了呢?

这里就要说一说next数组了,next 数组记录的就是最长相同前后缀( 字符串:听说你对KMP有这些疑问? 这里介绍了什么是前缀,什么是后缀,什么又是最长相同前后缀), 如果 next[len - 1] != -1,则说明字符串有最长相同的前后缀(就是字符串里的前缀子串和后缀子串相同的最长长度)。

最长相等前后缀的长度为:next[len - 1] + 1。

数组长度为:len。

如果len % (len - (next[len - 1] + 1)) == 0 ,则说明 (数组长度-最长相等前后缀的长度) 正好可以被 数组的长度整除,说明有该字符串有重复的子字符串。

数组长度减去最长相同前后缀的长度相当于是第一个周期的长度,也就是一个周期的长度,如果这个周期可以被整除,就说明整个数组就是这个周期的循环。

强烈建议大家把next数组打印出来,看看next数组里的规律,有助于理解KMP算法

如图:

459.重复的子字符串_1

next[len - 1] = 7,next[len - 1] + 1 = 8,8就是此时字符串asdfasdfasdf的最长相同前后缀的长度。

(len - (next[len - 1] + 1)) 也就是: 12(字符串的长度) - 8(最长公共前后缀的长度) = 4, 4正好可以被 12(字符串的长度) 整除,所以说明有重复的子字符串(asdf)。

代码如下:(这里使用了前缀表统一减一的实现方式)

class Solution {
public:
    void getNext (int* next, const string& s){
        next[0] = -1;
        int j = -1;
        for(int i = 1;i < s.size(); i++){
            while(j >= 0 && s[i] != s[j+1]) {
                j = next[j];
            }
            if(s[i] == s[j+1]) {
                j++;
            }
            next[i] = j;
        }
    }
    bool repeatedSubstringPattern (string s) {
        if (s.size() == 0) {
            return false;
        }
        int next[s.size()];
        getNext(next, s);
        int len = s.size();
        if (next[len - 1] != -1 && len % (len - (next[len - 1] + 1)) == 0) {
            return true;
        }
        return false;
    }
};

前缀表(不减一)的代码实现

class Solution {
public:
    void getNext (int* next, const string& s){
        next[0] = 0;
        int j = 0;
        for(int i = 1;i < s.size(); i++){
            while(j > 0 && s[i] != s[j]) {
                j = next[j - 1];
            }
            if(s[i] == s[j]) {
                j++;
            }
            next[i] = j;
        }
    }
    bool repeatedSubstringPattern (string s) {
        if (s.size() == 0) {
            return false;
        }
        int next[s.size()];
        getNext(next, s);
        int len = s.size();
        if (next[len - 1] != 0 && len % (len - (next[len - 1] )) == 0) {
            return true;
        }
        return false;
    }
};

拓展

此时我们已经分享了三篇KMP的文章,首先是字符串:KMP是时候上场了(一文读懂系列)讲解KMP算法的基础理论,给出next数组究竟是如何来了,前缀表又是怎么回事,为什么要选择前缀表。

然后通过字符串:都来看看KMP的看家本领!讲解一道KMP的经典题目,判断文本串里是否出现过模式串,这里涉及到构造next数组的代码实现,以及使用next数组完成模式串与文本串的匹配过程。

后来很多同学反馈说:搞不懂前后缀,什么又是最长相同前后缀(最长公共前后缀我认为这个用词不准确),以及为什么前缀表要统一减一(右移)呢,不减一行不行?针对这些问题,我在字符串:听说你对KMP有这些疑问?中又给出了详细的讲解。