Skip to content

Latest commit

 

History

History
240 lines (169 loc) · 9.84 KB

support_new_backend.md

File metadata and controls

240 lines (169 loc) · 9.84 KB

How to support new backends

MMDeploy supports a number of backend engines. We welcome the contribution of new backends. In this tutorial, we will introduce the general procedures to support a new backend in MMDeploy.

Prerequisites

Before contributing the codes, there are some requirements for the new backend that need to be checked:

  • The backend must support ONNX as IR.
  • If the backend requires model files or weight files other than a ".onnx" file, a conversion tool that converts the ".onnx" file to model files and weight files is required. The tool can be a Python API, a script, or an executable program.
  • It is highly recommended that the backend provides a Python interface to load the backend files and inference for validation.

Support backend conversion

The backends in MMDeploy must support the ONNX. The backend loads the ".onnx" file directly, or converts the ".onnx" to its own format using the conversion tool. In this section, we will introduce the steps to support backend conversion.

  1. Add backend constant in mmdeploy/utils/constants.py that denotes the name of the backend.

    Example:

    # mmdeploy/utils/constants.py
    
    class Backend(AdvancedEnum):
        # Take TensorRT as an example
        TENSORRT = 'tensorrt'
  2. Add a corresponding package (a folder with __init__.py) in mmdeploy/backend/. For example, mmdeploy/backend/tensorrt. In the __init__.py, there must be a function named is_available which checks if users have installed the backend library. If the check is passed, then the remaining files of the package will be loaded.

    Example:

    # mmdeploy/backend/tensorrt/__init__.py
    
    def is_available():
        return importlib.util.find_spec('tensorrt') is not None
    
    
    if is_available():
        from .utils import from_onnx, load, save
        from .wrapper import TRTWrapper
    
        __all__ = [
            'from_onnx', 'save', 'load', 'TRTWrapper'
        ]
  3. Create a config file in configs/_base_/backends (e.g., configs/_base_/backends/tensorrt.py). If the backend just takes the '.onnx' file as input, the new config can be simple. The config of the backend only consists of one field denoting the name of the backend (which should be same as the name in mmdeploy/utils/constants.py).

    Example:

    backend_config = dict(type='onnxruntime')

    If the backend requires other files, then the arguments for the conversion from ".onnx" file to backend files should be included in the config file.

    Example:

    backend_config = dict(
        type='tensorrt',
        common_config=dict(
            fp16_mode=False, max_workspace_size=0))

    After possessing a base backend config file, you can easily construct a complete deploy config through inheritance. Please refer to our config tutorial for more details. Here is an example:

    _base_ = ['../_base_/backends/onnxruntime.py']
    
    codebase_config = dict(type='mmpretrain', task='Classification')
    onnx_config = dict(input_shape=None)
  4. If the backend requires model files or weight files other than a ".onnx" file, create a onnx2backend.py file in the corresponding folder (e.g., create mmdeploy/backend/tensorrt/onnx2tensorrt.py). Then add a conversion function onnx2backend in the file. The function should convert a given ".onnx" file to the required backend files in a given work directory. There are no requirements on other parameters of the function and the implementation details. You can use any tools for conversion. Here are some examples:

    Use Python script:

    def onnx2openvino(input_info: Dict[str, Union[List[int], torch.Size]],
                      output_names: List[str], onnx_path: str, work_dir: str):
    
        input_names = ','.join(input_info.keys())
        input_shapes = ','.join(str(list(elem)) for elem in input_info.values())
        output = ','.join(output_names)
    
        mo_args = f'--input_model="{onnx_path}" '\
                  f'--output_dir="{work_dir}" ' \
                  f'--output="{output}" ' \
                  f'--input="{input_names}" ' \
                  f'--input_shape="{input_shapes}" ' \
                  f'--disable_fusing '
        command = f'mo.py {mo_args}'
        mo_output = run(command, stdout=PIPE, stderr=PIPE, shell=True, check=True)

    Use executable program:

    def onnx2ncnn(onnx_path: str, work_dir: str):
        onnx2ncnn_path = get_onnx2ncnn_path()
        save_param, save_bin = get_output_model_file(onnx_path, work_dir)
        call([onnx2ncnn_path, onnx_path, save_param, save_bin])\
  5. Define APIs in a new package in mmdeploy/apis.

    Example:

    # mmdeploy/apis/ncnn/__init__.py
    
    from mmdeploy.backend.ncnn import is_available
    
    __all__ = ['is_available']
    
    if is_available():
        from mmdeploy.backend.ncnn.onnx2ncnn import (onnx2ncnn,
                                                     get_output_model_file)
        __all__ += ['onnx2ncnn', 'get_output_model_file']

    Create a backend manager class which derive from BaseBackendManager, implement its to_backend static method.

    Example:

     @classmethod
     def to_backend(cls,
                 ir_files: Sequence[str],
                 deploy_cfg: Any,
                 work_dir: str,
                 log_level: int = logging.INFO,
                 device: str = 'cpu',
                 **kwargs) -> Sequence[str]:
         return ir_files
  6. Convert the models of OpenMMLab to backends (if necessary) and inference on backend engine. If you find some incompatible operators when testing, you can try to rewrite the original model for the backend following the rewriter tutorial or add custom operators.

  7. Add docstring and unit tests for new code :).

Support backend inference

Although the backend engines are usually implemented in C/C++, it is convenient for testing and debugging if the backend provides Python inference interface. We encourage the contributors to support backend inference in the Python interface of MMDeploy. In this section we will introduce the steps to support backend inference.

  1. Add a file named wrapper.py to corresponding folder in mmdeploy/backend/{backend}. For example, mmdeploy/backend/tensorrt/wrapper.py. This module should implement and register a wrapper class that inherits the base class BaseWrapper in mmdeploy/backend/base/base_wrapper.py.

    Example:

    from mmdeploy.utils import Backend
    from ..base import BACKEND_WRAPPER, BaseWrapper
    
    @BACKEND_WRAPPER.register_module(Backend.TENSORRT.value)
    class TRTWrapper(BaseWrapper):
  2. The wrapper class can initialize the engine in __init__ function and inference in forward function. Note that the __init__ function must take a parameter output_names and pass it to base class to determine the orders of output tensors. The input and output variables of forward should be dictionaries denoting the name and value of the tensors.

  3. For the convenience of performance testing, the class should define a "execute" function that only calls the inference interface of the backend engine. The forward function should call the "execute" function after preprocessing the data.

    Example:

    from mmdeploy.utils import Backend
    from mmdeploy.utils.timer import TimeCounter
    from ..base import BACKEND_WRAPPER, BaseWrapper
    
    @BACKEND_WRAPPER.register_module(Backend.ONNXRUNTIME.value)
    class ORTWrapper(BaseWrapper):
    
        def __init__(self,
                     onnx_file: str,
                     device: str,
                     output_names: Optional[Sequence[str]] = None):
            # Initialization
            # ...
            super().__init__(output_names)
    
        def forward(self, inputs: Dict[str,
                                       torch.Tensor]) -> Dict[str, torch.Tensor]:
            # Fetch data
            # ...
    
            self.__ort_execute(self.io_binding)
    
    		# Postprocess data
            # ...
    
        @TimeCounter.count_time('onnxruntime')
        def __ort_execute(self, io_binding: ort.IOBinding):
    		# Only do the inference
            self.sess.run_with_iobinding(io_binding)
  4. Create a backend manager class which derive from BaseBackendManager, implement its build_wrapper static method.

    Example:

         @BACKEND_MANAGERS.register('onnxruntime')
         class ONNXRuntimeManager(BaseBackendManager):
             @classmethod
             def build_wrapper(cls,
                               backend_files: Sequence[str],
                               device: str = 'cpu',
                               input_names: Optional[Sequence[str]] = None,
                               output_names: Optional[Sequence[str]] = None,
                               deploy_cfg: Optional[Any] = None,
                               **kwargs):
                 from .wrapper import ORTWrapper
                 return ORTWrapper(
                     onnx_file=backend_files[0],
                     device=device,
                     output_names=output_names)
  5. Add docstring and unit tests for new code :).

Support new backends using MMDeploy as a third party

Previous parts show how to add a new backend in MMDeploy, which requires changing its source codes. However, if we treat MMDeploy as a third party, the methods above are no longer efficient. To this end, adding a new backend requires us pre-install another package named aenum. We can install it directly through pip install aenum.

After installing aenum successfully, we can use it to add a new backend through:

from mmdeploy.utils.constants import Backend
from aenum import extend_enum

try:
    Backend.get('backend_name')
except Exception:
    extend_enum(Backend, 'BACKEND', 'backend_name')

We can run the codes above before we use the rewrite logic of MMDeploy.