-
Notifications
You must be signed in to change notification settings - Fork 3
/
hifitts.py
127 lines (103 loc) · 4.13 KB
/
hifitts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# Copyright (c) 2023 Amphion.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
import os
import json
import torchaudio
from tqdm import tqdm
from glob import glob
from collections import defaultdict
from utils.util import has_existed
def main(output_path, dataset_path):
print("-" * 10)
print("Preparing samples for hifitts...\n")
save_dir = os.path.join(output_path, "hifitts")
os.makedirs(save_dir, exist_ok=True)
print("Saving to ", save_dir)
train_output_file = os.path.join(save_dir, "train.json")
test_output_file = os.path.join(save_dir, "test.json")
valid_output_file = os.path.join(save_dir, "valid.json")
singer_dict_file = os.path.join(save_dir, "singers.json")
utt2singer_file = os.path.join(save_dir, "utt2singer")
if has_existed(train_output_file):
return
utt2singer = open(utt2singer_file, "w")
hifitts_path = dataset_path
speakers = []
train = []
test = []
valid = []
train_index_count = 0
test_index_count = 0
valid_index_count = 0
train_total_duration = 0
test_total_duration = 0
valid_total_duration = 0
distribution_infos = glob(hifitts_path + "/*.json")
for distribution_info in tqdm(
distribution_infos, desc="Extracting metadata from distributions"
):
distribution = distribution_info.split("/")[-1].split(".")[0]
speaker_id = distribution.split("_")[0]
speakers.append(speaker_id)
with open(distribution_info, "r", encoding="utf-8") as file:
for line in file:
entry = json.loads(line)
utt_path = entry.get("audio_filepath")
chosen_book = utt_path.split("/")[-2]
chosen_uid = utt_path.split("/")[-1].split(".")[0]
duration = entry.get("duration")
text = entry.get("text_normalized")
path = os.path.join(hifitts_path, utt_path)
assert os.path.exists(path)
res = {
"Dataset": "hifitts",
"Singer": speaker_id,
"Uid": "{}#{}#{}#{}".format(
distribution, speaker_id, chosen_book, chosen_uid
),
"Text": text,
"Path": path,
"Duration": duration,
}
if "train" in distribution:
res["index"] = train_index_count
train_total_duration += duration
train.append(res)
train_index_count += 1
elif "test" in distribution:
res["index"] = test_index_count
test_total_duration += duration
test.append(res)
test_index_count += 1
elif "dev" in distribution:
res["index"] = valid_index_count
valid_total_duration += duration
valid.append(res)
valid_index_count += 1
utt2singer.write("{}\t{}\n".format(res["Uid"], res["Singer"]))
unique_speakers = list(set(speakers))
unique_speakers.sort()
print("Speakers: \n{}".format("\t".join(unique_speakers)))
print(
"#Train = {}, #Test = {}, #Valid = {}".format(len(train), len(test), len(valid))
)
print(
"#Train hours= {}, #Test hours= {}, #Valid hours= {}".format(
train_total_duration / 3600,
test_total_duration / 3600,
valid_total_duration / 3600,
)
)
# Save train.json, test.json, valid.json
with open(train_output_file, "w") as f:
json.dump(train, f, indent=4, ensure_ascii=False)
with open(test_output_file, "w") as f:
json.dump(test, f, indent=4, ensure_ascii=False)
with open(valid_output_file, "w") as f:
json.dump(valid, f, indent=4, ensure_ascii=False)
# Save singers.json
singer_lut = {name: i for i, name in enumerate(unique_speakers)}
with open(singer_dict_file, "w") as f:
json.dump(singer_lut, f, indent=4, ensure_ascii=False)