forked from yueatsprograms/Stochastic_Depth
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ResidualDrop.lua
78 lines (70 loc) · 2.82 KB
/
ResidualDrop.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
require 'nn'
require 'cudnn'
require 'cunn'
local nninit = require 'nninit'
local ResidualDrop, parent = torch.class('nn.ResidualDrop', 'nn.Container')
function ResidualDrop:__init(deathRate, nChannels, nOutChannels, stride)
parent.__init(self)
self.gradInput = torch.Tensor()
self.gate = true
self.train = true
self.deathRate = deathRate
nOutChannels = nOutChannels or nChannels
stride = stride or 1
self.net = nn.Sequential()
self.net:add(cudnn.SpatialConvolution(nChannels, nOutChannels, 3,3, stride,stride, 1,1)
:init('weight', nninit.kaiming, {gain = 'relu'})
:init('bias', nninit.constant, 0))
self.net:add(cudnn.SpatialBatchNormalization(nOutChannels))
self.net:add(cudnn.ReLU(true))
self.net:add(cudnn.SpatialConvolution(nOutChannels, nOutChannels,
3,3, 1,1, 1,1)
:init('weight', nninit.kaiming, {gain = 'relu'})
:init('bias', nninit.constant, 0))
self.net:add(cudnn.SpatialBatchNormalization(nOutChannels))
self.skip = nn.Sequential()
self.skip:add(nn.Identity())
if stride > 1 then
-- optional downsampling
self.skip:add(nn.SpatialAveragePooling(stride, stride, stride,stride))
end
if nOutChannels > nChannels then
-- optional padding, this is option A in their paper
self.skip:add(nn.Padding(1, (nOutChannels - nChannels), 3))
elseif nOutChannels < nChannels then
print('Do not do this! nOutChannels < nChannels!')
end
self.modules = {self.net, self.skip}
end
function ResidualDrop:updateOutput(input)
local skip_forward = self.skip:forward(input)
self.output:resizeAs(skip_forward):copy(skip_forward)
if self.train then
if self.gate then -- only compute convolutional output when gate is open
self.output:add(self.net:forward(input))
end
else
self.output:add(self.net:forward(input):mul(1-self.deathRate))
end
return self.output
end
function ResidualDrop:updateGradInput(input, gradOutput)
self.gradInput = self.gradInput or input.new()
self.gradInput:resizeAs(input):copy(self.skip:updateGradInput(input, gradOutput))
if self.gate then
self.gradInput:add(self.net:updateGradInput(input, gradOutput))
end
return self.gradInput
end
function ResidualDrop:accGradParameters(input, gradOutput, scale)
scale = scale or 1
if self.gate then
self.net:accGradParameters(input, gradOutput, scale)
end
end
---- Adds a residual block to the passed in model ----
function addResidualDrop(model, deathRate, nChannels, nOutChannels, stride)
model:add(nn.ResidualDrop(deathRate, nChannels, nOutChannels, stride))
model:add(cudnn.ReLU(true))
return model
end