Skip to content

Training computational graph on top of structured data (string, graph, etc)

License

Notifications You must be signed in to change notification settings

Hanjun-Dai/graphnn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

52 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

graphnn

Prerequisites

Tested under Ubuntu 14.04

Download and install cuda from https://developer.nvidia.com/cuda-toolkit
wget http://developer.download.nvidia.com/compute/cuda/repos/ubuntu1404/x86_64/cuda-repo-ubuntu1404_7.5-18_amd64.deb
sudo dpkg -i cuda-repo-ubuntu1404_7.5-18_amd64.deb
sudo apt-get update
sudo apt-get install cuda

in .bashrc, add the following path

export CUDA_HOME=/usr/local/cuda
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
Download and install intel mkl

in .bashrc, add the following path

source {path_to_your_intel_root/name_of_parallel_tool_box}/bin/psxevars.sh
export MKL_ROOT={path_to_your_intel_root}/mkl
Install cppformat
check https://github.com/cppformat/cppformat for help
Install Spiral-wht
wget http://www.ece.cmu.edu/~spiral/software/spiral-wht-1.8.tgz
tar -zxvf spiral-wht-1.8.tgz
cd spiral-wht-1.8
./configure
make
make install

Build static library

make

Run example

Run mnist
cd examples/mnist
make
./run_exp.sh
Run graph classification
cd examples/graph_classification
make
./local_run.sh

The 5 datasets under the data/ folder are commonly used in graph kernel. 

About

Training computational graph on top of structured data (string, graph, etc)

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published