-
Notifications
You must be signed in to change notification settings - Fork 70
/
Copy pathwebui.py
952 lines (887 loc) · 42.3 KB
/
webui.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
# webui.py
# Simple web configuration for horde worker
import argparse
import contextlib
import datetime
import glob
import math
import os
import pathlib
import shutil
import sys
import time
import gradio as gr
import requests
import yaml
# Helper class to access dictionaries
class DotDict(dict):
def __getattr__(self, attr):
return self[attr] if attr in self else None
def __setattr__(self, attr, value):
self[attr] = value
def __delattr__(self, attr):
if attr in self:
del self[attr]
else:
raise AttributeError(f"'{type(self).__name__}' object has no attribute '{attr}'")
def default(self, attr, value):
if attr not in self:
self[attr] = value
class WebUI:
CONFIG_FILE = "bridgeData.yaml"
# This formally maps config item key name to gradio label and info.
# The reverse lookup is also done, gradio label to config item key name.
INFO = {
"worker_name": {
"label": "Worker Name",
"info": "This is a the name of your worker. It needs to be unique to the whole horde. "
"You cannot run different workers with the same name. It will be publicly visible.",
},
"dreamer_name": {
"label": "Dreamer Name",
"info": "(Optional) This is the name of your image generation worker. "
"It needs to be unique to the whole horde. "
"Overrides worker_name if specified, and defaults to worker_name if left blank/default",
},
"api_key": {
"label": "API Key",
"info": "This is your Stable Horde API Key. You can get one free at " "https://stablehorde.net/register ",
},
"horde_url": {
"label": "The URL of the horde API server.",
"info": "Don't change this unless you know exactly what you are doing.",
},
"stats_output_frequency": {
"label": "Stats Output Frequency",
"info": "How often, in seconds, that statistics such as kudos per hour are output to "
"the display by the worker.",
},
"threads": {
"label": "Number of Threads",
"info": "Most workers leave this at 1. "
"This determines how many jobs will be processed simultaneously. "
"Each job requires extra VRAM and will slow the speed of generations. "
"This should be set to provide generations at a minumum speed of 0.6 megapixels per second. "
"Expected max per VRAM size: 6Gb = 1 thread, 6-8Gb = 2 threads, 8-12Gb = 3 threads, "
"12Gb - 24Gb = 4 threads",
},
"queue_size": {
"label": "Job Queue Size",
"info": "This number determines the number of extra jobs that are collected. "
"When the worker requests jobs it will request 1 job per thread plus this number. ",
},
"allow_unsafe_ip": {"label": "Allow requests from suspicious IP addresses", "info": ""},
"require_upfront_kudos": {"label": "Accept requests only from users with kudos", "info": ""},
"blacklist": {
"label": "Blacklisted Words (Separate with commas)",
"info": "Any words in here that match a prompt will result in that job not being "
"accepted by this worker.",
},
"censorlist": {
"label": "Censored Words (Separate with commas)",
"info": "Any words in here that match a prompt will always result in a censored image " "being returned.",
},
"nsfw": {"label": "Enable NSFW", "info": "Allow your worker to accept jobs that contain NSFW " "content."},
"censor_nsfw": {
"label": "Censor NSFW images",
"info": "If this is true, the worker will scan all resulting images for NSFW and censor any detected. "
"If this is false, the worker will only scan for NSFW on client request. "
"This does nothing is 'Enable NSFW' is set to True.",
},
"cache_home": {
"label": "Model Directory",
"info": "Downloaded models files are stored here. The default './' is means the AI-Horde-Worker "
"directory (check for a folder name 'nataili' after your first run).",
},
"temp_dir": {
"label": "Model Cache Directory",
"info": "Model cache data is stored here. Downloaded models are processed and copies stored "
"here if you load too many models to fit in RAM and VRAM.",
},
"always_download": {
"label": "Automatically download required models",
"info": "Download any required models without asking you first.",
},
"dynamic_models": {
"label": "Enable dynamic models",
"info": "In addition to any other models you have selected to load, you can select this to "
"have your worker automatically load whatever models are in high demand on the horde right "
"now. This constantly checks what models are in highest demand and loads them.",
},
"number_of_dynamic_models": {
"label": "Number of Models to Dynamically Load",
"info": "This number of high demand models will be dynamically loaded, in addition to any "
"other models you have selected to load.",
},
"max_models_to_download": {
"label": "Maximum Number of Models to Download",
"info": "This number is the maximum number of models that the worker will download and run. "
"Each model can take between 2 GB to 8 GB, ensure you have enough storage space available. "
"This number includes system models such as the safety checker and the post-processors, so "
"don't set it too low!",
},
"alchemist_name": {
"label": "Alchemist Name",
"info": "(Optional) This is the name of your Alchemist. It needs to be unique to the whole horde. "
"Overrides worker_name if specified, and defaults to worker_name if left blank/default",
},
"forms": {
"label": "Alchemy Worker Features",
"info": "Enable or disable the different types of requests accepted by this worker if you"
"run an Alchemy worker (image interrogation and upscaling worker)",
},
"allow_img2img": {
"label": "Allow img2img requests",
"info": "Enable or disable the processing of img2img jobs.",
},
"allow_painting": {
"label": "Allow inpainting requests",
"info": "Enable or disable the processing of inpainting jobs.",
},
"allow_post_processing": {
"label": "Allow requests requiring post-processing",
"info": "Enable or disable the processing of jobs that also require post-processing.",
},
"allow_controlnet": {
"label": "Allow requests requiring ControlNet",
"info": "Enable or disable the processing of jobs that also require ControlNet.",
},
"allow_lora": {
"label": "Allow LoRas to be used by this worker",
"info": "Your worker will download the top 10Gb of non-character LoRas and then will ad-hoc download any "
"LoRa requested which you do not have, and cache that for a number a days",
},
"max_lora_cache_size": {
"label": "Lora Cache Size (In gigabytes!) ",
"info": "Use this setting to control how much extra space LoRas can take after you downloaded the Top."
"If a new Lora would exceed this space, an old lora you've downloaded previously will be deleted. "
"!Note! THIS IS ON TOP OF THE CURATED LORAs, so plan around +5G more than this",
},
"disable_terminal_ui": {
"label": "Disable Terminal UI",
"info": "Disable the display of the terminal UI, just output lines to the terminal",
},
"priority_usernames": {
"label": "Priority Usernames (Separate with commas)",
"info": "These users will be prioritized over all others when submitting jobs. "
"Enter in format username#id e.g. residentchiefnz#3966. You do not need "
"to add your own name to this list",
},
"max_power": {
"label": "Maximum Image Size",
"info": "This is the maximum image size your worker can generate. Start small at 512x512. "
"Larger images use a significant amount of VRAM, if you go too large your worker will crash. "
"Common numbers are 2 (256x256), 8 (512x512), 18 (768x768), and 32 (1024x1024)",
},
"models_on_disk": {
"label": "Already Downloaded Models To Load",
"info": "These are models which are already downloaded to your worker.",
},
"models_to_load": {
"label": "Individual Models To Load",
"info": "You can select individual models to load here. These are loaded in addition to "
"any other models you have selected, such as 'Top 5' and dynamic models.",
},
"models_to_skip": {
"label": "Models To Skip",
"info": "Any model you select here will NEVER be downloaded to your worker, regardless of "
"any other model loading settings. Use this to completely exclude a model from your worker.",
},
"special_models_to_load": {
"label": "Loading Groups of Models",
"info": "You can select groups of models here. 'All Models' loads all possible models "
"which will take over 500gb of space in the folder defined by the setting 'cache_home'. "
"The other options load different subsets of models based on style. You can select "
"more than one.",
},
"special_top_models_to_load": {
"label": "Automatically Loading Popular Models",
"info": "Choose to automatically load the top 'n' most popular models of the day.",
},
"ram_to_leave_free": {
"label": "RAM to Leave Free (%)",
"info": "This is the amount of RAM to leave free for your system to use. You should raise this value "
"if you expect to run other programs on your computer while running your worker.",
},
"vram_to_leave_free": {
"label": "VRAM to Leave Free (%)",
"info": "This is the amount of VRAM to leave free for your system to use. ",
},
"scribe_name": {
"label": "Scribe Name",
"info": "(Optional) This is a the name of your scribe worker. It needs to be unique to the whole horde. "
"You cannot run different workers with the same name. It will be publicly visible. "
"Overrides worker_name if specified, and defaults to worker_name if left blank/default",
},
"kai_url": {
"label": "Kai URL",
"info": "This is the URL of the Kobold AI Client API you want your worker to connect to. "
"You will probably be running your own Kobold AI Client, and you should enter the URL here.",
},
"max_length": {
"label": "Maximum Length",
"info": "This is the maximum number of tokens your worker will generate per request.",
},
"max_context_length": {
"label": "Maximum Context Length",
"info": "The max tokens to use from the prompt.",
},
"branded_model": {
"label": "Branded Model",
"info": " This will prevent the model from being used from the shared pool, but will ensure that"
" no other worker can pretend to serve it If you are unsure, leave this as 'None'.",
},
}
models_found_on_disk = None
def __init__(self):
self.app = None
self.models_found_on_disk = []
def _label(self, name):
return WebUI.INFO[name]["label"] if name in WebUI.INFO else None
def _info(self, name):
return f"{WebUI.INFO[name]['info']} [{name}]" if name in WebUI.INFO else None
# Label to config item name
def _cfg(self, label):
return next(
(key for key, value in WebUI.INFO.items() if value["label"] == label),
None,
)
def reload_config(self):
# Sanity check, to ensure Tazlin doesn't give me a hard time
# about this corner case [jug]
if os.path.exists("bridgeData.py"):
print(
"You have a very old config file. Please run your worker "
"at least once to update to the new format and then try again "
"with this webUI",
file=sys.stderr,
)
exit(1)
if not os.path.exists(WebUI.CONFIG_FILE):
# Create it from the template
shutil.copy("bridgeData_template.yaml", WebUI.CONFIG_FILE)
with open(WebUI.CONFIG_FILE, "rt", encoding="utf-8") as configfile:
data = yaml.safe_load(configfile)
return DotDict(data)
def process_input_list(self, list):
output = []
if list != "":
temp = list.split(",")
for item in temp:
trimmed_item = item.strip()
output.append(trimmed_item)
return output
def save_config(self, args):
args = DotDict(args)
# Grab the existing config file contents
config = self.reload_config()
# Merge values which require some pre-processing
skipped_keys = ["models_on_disk", "special_models_to_load", "special_top_models_to_load"]
models_to_load = []
for key, value in args.items():
cfgkey = self._cfg(key.label)
if cfgkey == "priority_usernames" or cfgkey == "blacklist" or cfgkey == "censorlist":
config[cfgkey] = self.process_input_list(value)
continue
if cfgkey == "ram_to_leave_free" or cfgkey == "vram_to_leave_free":
config[cfgkey] = str(value) + "%"
continue
if cfgkey == "special_models_to_load" or cfgkey == "models_on_disk":
models_to_load.extend(value)
elif cfgkey == "special_top_models_to_load":
if value and value != "None":
models_to_load.append(value)
elif cfgkey == "models_to_load":
models_to_load.extend(value)
elif cfgkey == "dreamer_name" and (value == "An Awesome Dreamer" or not value):
skipped_keys.append("dreamer_name")
elif cfgkey == "scribe_name" and (value == "An Awesome Scribe" or not value):
skipped_keys.append("scribe_name")
elif cfgkey == "alchemist_name" and (value == "An Awesome Alchemist" or not value):
skipped_keys.append("alchemist_name")
config[cfgkey] = value if cfgkey != "models_to_load" else None
config["models_to_load"] = models_to_load
with open(WebUI.CONFIG_FILE, "wt", encoding="utf-8") as configfile:
yaml.safe_dump({k: v for k, v in config.items() if k not in skipped_keys}, configfile)
return f"Configuration Saved at {datetime.datetime.now()}"
def download_models(self, model_location):
models = None
try:
r = requests.get(model_location)
models = r.json()
print("Models downloaded successfully")
except Exception:
print("Failed to load models")
return models
def load_models(self):
remote_models = (
"https://raw.githubusercontent.com/Haidra-org/AI-Horde-image-model-reference/main/stable_diffusion.json"
)
latest_models = self.download_models(remote_models)
if not latest_models or not isinstance(latest_models, dict):
print("Failed to load models")
latest_models = {}
aiworker_cache_home = os.environ.get("AIWORKER_CACHE_HOME", None)
model_cache_folder = aiworker_cache_home if aiworker_cache_home else "./"
sub_folders = ["", "nataili", "models"]
sd_models_folders: list[pathlib.Path] = [
pathlib.Path(model_cache_folder).joinpath(x).joinpath("compvis") for x in sub_folders
]
for sd_models_folder in sd_models_folders:
if sd_models_folder.exists():
all_files_in_cache = glob.glob(str(sd_models_folder.joinpath("*.*")))
all_files_in_cache = [
pathlib.Path(x).name for x in all_files_in_cache if x.endswith((".ckpt", ".safetensors"))
]
for model_name, model_info in latest_models.items():
model_config_dict: dict = model_info.get("config", None)
if not model_config_dict:
continue
model_file_config_list: list = model_config_dict.get("files", None)
if not model_file_config_list:
continue
if len(model_file_config_list) == 0:
continue
model_filename: str | None = None
for key in model_file_config_list:
model_filename = key.get("path", None)
if model_filename and "yaml" not in model_filename:
break
if model_filename and model_filename in all_files_in_cache:
if self.models_found_on_disk is None:
self.models_found_on_disk = []
self.models_found_on_disk.append(model_name)
break
return sorted(latest_models, key=str.casefold)
def load_workerID(self, worker_name):
workerID = ""
workers_URL = "https://stablehorde.net/api/v2/workers"
r = requests.get(workers_URL)
worker_json = r.json()
for item in worker_json:
if item["name"] == worker_name:
workerID = item["id"]
return workerID
def load_worker_mode(self, worker_name):
worker_mode = False
workers_URL = "https://stablehorde.net/api/v2/workers"
r = requests.get(workers_URL)
worker_json = r.json()
for item in worker_json:
if item["name"] == worker_name:
worker_mode = item["maintenance_mode"]
return worker_mode
def load_worker_stats(self, worker_name):
worker_stats = ""
workers_URL = "https://stablehorde.net/api/v2/workers"
r = requests.get(workers_URL)
worker_json = r.json()
for item in worker_json:
if item["name"] == worker_name:
worker_stats += "Current MPS: " + str(item["performance"]).split()[0] + " MPS\n"
worker_stats += "Total Kudos Earned: " + str(item["kudos_rewards"]) + "\n"
worker_stats += "Total Jobs Completed: " + str(item["requests_fulfilled"])
return worker_stats
def update_worker_mode(self, worker_name, worker_id, current_mode, apikey):
header = {"apikey": apikey}
payload = {"maintenance": False, "name": worker_name}
if current_mode == "False":
payload = {"maintenance": True, "name": worker_name}
worker_URL = f"https://stablehorde.net/api/v2/workers/{worker_id}"
requests.put(worker_URL, json=payload, headers=header)
state = "enabled" if payload["maintenance"] else "disabled"
return f"Maintenance mode is being {state}, this may take up to 30 seconds to update here. Please wait."
def _imgsize(self, value):
try:
pixels = int(math.sqrt(64 * 64 * 8 * value))
except ValueError:
pixels = 0
return f"Maximum image size of approximately {pixels}x{pixels}"
def initialise(self):
config = self.reload_config()
model_list = self.load_models()
model_list = [model for model in model_list if model not in self.models_found_on_disk]
models_on_disk = []
# Seperate out the magic constants
models_to_load_all = []
models_to_load_top = "None"
models_to_load_individual = []
for model in config.models_to_load:
if not model:
continue
if model.lower().startswith("top "):
models_to_load_top = model.title()
elif model.lower().startswith("all "):
models_to_load_all.append(model.title())
elif model in self.models_found_on_disk:
models_on_disk.append(model)
else:
models_to_load_individual.append(model)
existing_priority_usernames = ""
config.default("priority_usernames", [])
for item in config.priority_usernames:
existing_priority_usernames += item
existing_priority_usernames += ","
if len(existing_priority_usernames) > 0 and existing_priority_usernames[-1] == ",":
existing_priority_usernames = existing_priority_usernames[:-1]
existing_blacklist = ""
config.default("blacklist", [])
for item in config.blacklist:
existing_blacklist += item
existing_blacklist += ","
if len(existing_blacklist) > 0 and existing_blacklist[-1] == ",":
existing_blacklist = existing_blacklist[:-1]
existing_censorlist = ""
config.default("censorlist", [])
for item in config.censorlist:
existing_censorlist += item
existing_censorlist += ","
if len(existing_censorlist) > 0 and existing_censorlist[-1] == ",":
existing_censorlist = existing_censorlist[:-1]
# Load css if it exists
css = ""
if os.path.exists("webui.css"):
with open("webui.css", "rt", encoding="utf-8", errors="ignore") as cssfile:
css = cssfile.read()
with gr.Blocks(css=css) as self.app:
gr.Markdown("# AI Horde Worker Configuration")
with gr.Row():
with gr.Tab("Basic Settings"), gr.Column():
worker_name = gr.Textbox(
label=self._label("worker_name"),
value=config.worker_name,
info=self._info("worker_name"),
)
config.default("dreamer_name", "An Awesome Dreamer")
dreamer_name = gr.Textbox(
label=self._label("dreamer_name"),
value=config.dreamer_name,
info=self._info("dreamer_name"),
)
config.default("alchemist_name", "An Awesome Alchemist")
alchemist_name = gr.Textbox(
label=self._label("alchemist_name"),
value=config.alchemist_name,
info=self._info("alchemist_name"),
)
api_key = gr.Textbox(
label=self._label("api_key"),
value=config.api_key,
type="password",
info=self._info("api_key"),
)
slider_desc = gr.Markdown("Maximum Image Size")
config.default("max_power", 8)
max_power = gr.Slider(
2,
128,
step=2,
label=self._label("max_power"),
show_label=False,
value=config.max_power,
info=self._info("max_power"),
)
# Hook the slider on change event to display image size
max_power.change(fn=self._imgsize, inputs=max_power, outputs=slider_desc)
priority_usernames = gr.Textbox(
label=self._label("priority_usernames"),
value=existing_priority_usernames,
info=self._info("priority_usernames"),
)
with gr.Tab("Enable Features"), gr.Column():
config.default("allow_img2img", True)
allow_img2img = gr.Checkbox(
label=self._label("allow_img2img"),
value=config.allow_img2img,
info=self._info("allow_img2img"),
)
config.default("allow_painting", False)
allow_painting = gr.Checkbox(
label=self._label("allow_painting"),
value=config.allow_painting,
info=self._info("allow_painting"),
)
config.default("allow_post_processing", True)
allow_post_processing = gr.Checkbox(
label=self._label("allow_post_processing"),
value=config.allow_post_processing,
info=self._info("allow_post_processing"),
)
config.default("allow_controlnet", False)
allow_controlnet = gr.Checkbox(
label=self._label("allow_controlnet"),
value=config.allow_controlnet,
info=self._info("allow_controlnet"),
)
config.default("allow_lora", False)
allow_lora = gr.Checkbox(
label=self._label("allow_lora"),
value=config.allow_lora,
info=self._info("allow_lora"),
)
config.default("max_lora_cache_size", 10)
max_lora_cache_size = gr.Slider(
label=self._label("max_lora_cache_size"),
value=config.max_lora_cache_size,
info=self._info("max_lora_cache_size"),
minimum=10,
maximum=1024,
step=1,
)
config.default("forms", [])
forms = gr.CheckboxGroup(
label=self._label("forms"),
choices=["caption", "nsfw", "interrogation", "post-process"],
value=config.forms,
info=self._info("forms"),
)
with gr.Tab("Models To Load"):
with gr.Row():
special_models_to_load = gr.CheckboxGroup(
choices=[
"All Models",
"All Realistic Models",
"All Anime Models",
"All Generalist Models",
"All Furry Models",
"All Artistic Models",
"All Other Models",
],
label=self._label("special_models_to_load"),
value=models_to_load_all,
info=self._info("special_models_to_load"),
)
with gr.Row():
special_top_models_to_load = gr.Radio(
choices=[
"None",
"Top 1",
"Top 2",
"Top 3",
"Top 4",
"Top 5",
"Top 6",
"Top 7",
"Top 8",
"Top 9",
"Top 10",
],
label=self._label("special_top_models_to_load"),
value=models_to_load_top,
info=self._info("special_top_models_to_load"),
)
with gr.Row(), gr.Column():
models_on_disk = gr.CheckboxGroup(
choices=self.models_found_on_disk,
label=self._label("models_on_disk"),
value=models_on_disk,
info=self._info("models_on_disk"),
)
with gr.Row(), gr.Column():
models_to_load = gr.CheckboxGroup(
choices=model_list,
label=self._label("models_to_load"),
value=models_to_load_individual,
info=self._info("models_to_load"),
)
with gr.Tab("Models to Skip"), gr.Column():
config.default("models_to_skip", [])
models_to_skip = gr.CheckboxGroup(
choices=model_list,
label=self._label("models_to_skip"),
value=config.models_to_skip,
info=self._info("models_to_skip"),
)
with gr.Tab("Model Management"), gr.Column():
config.default("always_download", True)
always_download = gr.Checkbox(
label=self._label("always_download"),
value=config.always_download,
info=self._info("always_download"),
)
config.default("max_models_to_download", 10)
max_models_to_download = gr.Number(
label=self._label("max_models_to_download"),
value=config.max_models_to_download,
precision=0,
info=self._info("max_models_to_download"),
)
config.default("dynamic_models", True)
dynamic_models = gr.Checkbox(
label=self._label("dynamic_models"),
value=config.dynamic_models,
info=self._info("dynamic_models"),
)
config.default("number_of_dynamic_models", 3)
number_of_dynamic_models = gr.Number(
label=self._label("number_of_dynamic_models"),
value=config.number_of_dynamic_models,
precision=0,
info=self._info("number_of_dynamic_models"),
)
config.default("cache_home", "./")
cache_home = gr.Textbox(
label=self._label("cache_home"),
value=config.cache_home,
info=self._info("cache_home"),
)
config.default("temp_dir", "./tmp")
temp_dir = gr.Textbox(
label=self._label("temp_dir"),
value=config.temp_dir,
info=self._info("temp_dir"),
)
with gr.Tab("Security"), gr.Column():
config.default("allow_unsafe_ip", False)
allow_unsafe_ip = gr.Checkbox(
label=self._label("allow_unsafe_ip"),
value=config.allow_unsafe_ip,
info=self._info("allow_unsafe_ip"),
)
config.default("require_upfront_kudos", False)
require_upfront_kudos = gr.Checkbox(
label=self._label("require_upfront_kudos"),
value=config.require_upfront_kudos,
info=self._info("require_upfront_kudos"),
)
blacklist = gr.Textbox(
label=self._label("blacklist"),
value=existing_blacklist,
info=self._info("blacklist"),
)
censorlist = gr.Textbox(
label=self._label("censorlist"),
value=existing_censorlist,
info=self._info("censorlist"),
)
config.default("nsfw", True)
nsfw = gr.Checkbox(
label=self._label("nsfw"),
value=config.nsfw,
info=self._info("nsfw"),
)
config.default("censor_nsfw", False)
censor_nsfw = gr.Checkbox(
label=self._label("censor_nsfw"),
value=config.censor_nsfw,
info=self._info("censor_nsfw"),
)
with gr.Tab("Performance"), gr.Column():
config.default("threads", 1)
max_threads = gr.Slider(
1,
8,
step=1,
label=self._label("threads"),
value=config.max_threads,
info=self._info("threads"),
)
config.default("queue_size", 1)
queue_size = gr.Slider(
0,
2,
step=1,
label=self._label("queue_size"),
value=config.queue_size,
info=self._info("queue_size"),
)
parsed_ram_from_config = 40
with contextlib.suppress(Exception):
parsed_ram_from_config = int(config.ram_to_leave_free.split("%")[0])
ram_to_leave_free = gr.Slider(
0,
100,
step=1,
label=self._label("ram_to_leave_free"),
value=parsed_ram_from_config,
info=self._info("ram_to_leave_free"),
)
parsed_vram_from_config = 40
with contextlib.suppress(Exception):
parsed_vram_from_config = int(config.vram_to_leave_free.split("%")[0])
vram_to_leave_free = gr.Slider(
0,
100,
step=1,
label=self._label("vram_to_leave_free"),
value=parsed_vram_from_config,
info=self._info("vram_to_leave_free"),
)
with gr.Tab("Advanced"), gr.Column():
config.default("disable_terminal_ui", False)
disable_terminal_ui = gr.Checkbox(
label=self._label("disable_terminal_ui"),
value=config.disable_terminal_ui,
info=self._info("disable_terminal_ui"),
)
config.default("horde_url", "https://aihorde.net/")
horde_url = gr.Textbox(
label=self._label("horde_url"),
value=config.horde_url,
info=self._info("horde_url"),
)
config.default("stats_output_frequency", 30)
stats_output_frequency = gr.Number(
label=self._label("stats_output_frequency"),
value=config.stats_output_frequency,
precision=0,
info=self._info("stats_output_frequency"),
)
with gr.Tab("Worker Control"), gr.Column():
gr.Markdown(
"Enable maintenance mode to prevent this worker fetching any more jobs to process. "
"Jobs that you submit yourself will still be picked up by your worker even if maintenance "
"mode is enabled.",
)
maint_button = gr.Button(value="Toggle Maintenance Mode", variant="secondary")
maint_message = gr.Markdown("")
worker_id = gr.Textbox(label="Worker ID")
maintenance_mode = gr.Textbox(label="Current Maintenance Mode Status")
self.app.load(self.load_workerID, inputs=worker_name, outputs=worker_id, every=15)
self.app.load(self.load_worker_mode, inputs=worker_name, outputs=maintenance_mode, every=15)
maint_button.click(
self.update_worker_mode,
inputs=[worker_name, worker_id, maintenance_mode, api_key],
outputs=[maint_message],
)
with gr.Tab("Scribe Options"), gr.Column():
gr.Markdown(
"Options for the Scribes (text workers)",
)
config.default("scribe_name", "An Awesome Scribe")
scribe_name = gr.Textbox(
label=self._label("scribe_name"),
value=config.scribe_name,
info=self._info("scribe_name"),
)
config.default("kai_url", "http://localhost:5000")
kai_url = gr.Textbox(
label=self._label("kai_url"),
value=config.kai_url,
info=self._info("kai_url"),
)
config.default("max_length", 80)
max_length = gr.Slider(
0,
240,
step=10,
label=self._label("max_length"),
value=config.max_length,
info=self._info("max_length"),
)
config.default("max_context_length", 1024)
max_context_length = gr.Slider(
0,
8192,
step=128,
label=self._label("max_context_length"),
value=config.max_context_length,
info=self._info("max_context_length"),
)
config.default("branded_model", False)
branded_model = gr.Checkbox(
label=self._label("branded_model"),
value=config.branded_model,
info=self._info("branded_model"),
)
with gr.Row():
submit = gr.Button(value="Save Configuration", variant="primary")
with gr.Row():
message = gr.Markdown("")
submit.click(
self.save_config,
inputs={
alchemist_name,
allow_controlnet,
allow_img2img,
allow_painting,
allow_post_processing,
allow_unsafe_ip,
always_download,
api_key,
blacklist,
censor_nsfw,
censorlist,
dreamer_name,
dynamic_models,
disable_terminal_ui,
forms,
horde_url,
max_models_to_download,
max_power,
max_threads,
models_on_disk,
models_to_load,
models_to_skip,
cache_home,
nsfw,
number_of_dynamic_models,
priority_usernames,
queue_size,
temp_dir,
require_upfront_kudos,
special_models_to_load,
special_top_models_to_load,
stats_output_frequency,
worker_name,
ram_to_leave_free,
vram_to_leave_free,
scribe_name,
kai_url,
max_length,
max_context_length,
branded_model,
allow_lora,
max_lora_cache_size,
},
outputs=[message],
)
self.app.queue()
def run(self, share, nobrowser, lan, user, password):
server_name = "0.0.0.0" if lan else None
self.initialise()
self.app.launch(
quiet=True,
share=share,
auth=(user, password) if user and password else None,
inbrowser=not nobrowser,
server_name=server_name,
prevent_thread_lock=True,
)
while True:
time.sleep(0.1)
if __name__ == "__main__":
# Check args
parser = argparse.ArgumentParser(description="Horde Web Configuration")
parser.add_argument("--share", action="store_true", help="Create a public URL")
parser.add_argument("--no-browser", action="store_true", help="Don't open automatically in a web browser")
parser.add_argument("--lan", action="store_true", help="Allow access on the local network")
parser.add_argument("--user", action="store", nargs=1, help="Username for authentication")
parser.add_argument("--password", action="store", nargs=1, help="Password for authentication")
parser.add_argument("--no-auth", action="store_true", help="Disable authentication")
args = parser.parse_args()
if args.share or args.lan:
if not args.no_auth and not args.user:
print(
(
"WARNING: You are running in public mode without authentication. This is not recommended.\n"
"To enable authentication, use the --user and --password arguments.\n"
"If you are running in a trusted environment, you can disable this warning with the "
"--no-auth argument.\n"
"Continue without authentication? (y/n)"
),
)
if input().lower() != "y":
exit(0)
if (args.user or args.password) and not (args.user and args.password):
parser.error("--user and --password must both be specified")
elif args.user or args.password:
parser.error("--user and --password can only be used with --share or --lan")
ui = WebUI()
ui.run(
args.share,
args.no_browser,
args.lan,
args.user[0] if args.user else None,
args.password[0] if args.password else None,
)