forked from deepspeedai/DeepSpeed
-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathsimple_model.py
311 lines (239 loc) · 11.2 KB
/
simple_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import os
import json
import argparse
import torch
from collections import OrderedDict
from deepspeed.pipe import PipelineModule, LayerSpec
from deepspeed.moe.layer import MoE
from deepspeed.accelerator import get_accelerator
import deepspeed.comm as dist
from .common import preferred_dtype
class SimpleModel(torch.nn.Module):
def __init__(self, hidden_dim, empty_grad=False, nlayers=1):
super(SimpleModel, self).__init__()
self.linears = torch.nn.ModuleList([torch.nn.Linear(hidden_dim, hidden_dim) for i in range(nlayers)])
if empty_grad:
self.linear2 = torch.nn.Linear(hidden_dim, hidden_dim)
self.cross_entropy_loss = torch.nn.CrossEntropyLoss()
self.empty_grad = empty_grad
def forward(self, x, y):
if len(self.linears) == 1:
x = self.linears[0](x)
else:
for i, l in enumerate(self.linears):
x = self.linears[i // 2](x) + l(x)
return self.cross_entropy_loss(x, y)
class SimpleFrozenModel(torch.nn.Module):
def __init__(self, hidden_dim, empty_grad=False):
super(SimpleFrozenModel, self).__init__()
self.linears = torch.nn.ModuleList([torch.nn.Linear(hidden_dim, hidden_dim) for i in range(2)])
if empty_grad:
self.linear2 = torch.nn.Linear(hidden_dim, hidden_dim)
self.cross_entropy_loss = torch.nn.CrossEntropyLoss()
self.empty_grad = empty_grad
# Freeze first layer
self.linears[0].weight.requires_grad = False
self.linears[0].bias.requires_grad = False
def custom_state_dict(self, *args, **kwargs):
state_dict = super(SimpleFrozenModel, self).state_dict(*args, **kwargs)
custom = OrderedDict()
for k, v in state_dict.items():
if 'linears.0.weight' not in k:
custom[k] = v
return custom
def forward(self, x, y):
if len(self.linears) == 1:
x = self.linears[0](x)
else:
for i, l in enumerate(self.linears):
x = self.linears[i // 2](x) + l(x)
return self.cross_entropy_loss(x, y)
class Curriculum_SimpleModel(SimpleModel):
def __init__(self, hidden_dim, empty_grad=False):
super(Curriculum_SimpleModel, self).__init__(hidden_dim, empty_grad)
def forward(self, x, y, **kwargs):
seqlen = kwargs.get('curriculum_seqlen', None)
loss = super(Curriculum_SimpleModel, self).forward(x, y)
return loss, seqlen
class SimpleMoEModel(torch.nn.Module):
def __init__(self, hidden_dim, num_experts=4, ep_size=1, use_residual=False):
super(SimpleMoEModel, self).__init__()
self.linear1 = torch.nn.Linear(hidden_dim, hidden_dim)
expert = torch.nn.Sequential(torch.nn.Linear(hidden_dim, hidden_dim), torch.nn.Linear(hidden_dim, hidden_dim))
# using two MoE layers to check implications of sharing a single storage
self.moe_1 = MoE(hidden_size=hidden_dim,
expert=expert,
ep_size=ep_size,
use_residual=use_residual,
num_experts=num_experts,
k=1)
# interleaving MoE modules with dense to create an opportunity
# for gradients to be merged in ZeRO stage 2 average_tensor reduce bucket
self.linear2 = torch.nn.Linear(hidden_dim, hidden_dim)
self.moe_2 = MoE(hidden_size=hidden_dim,
expert=expert,
ep_size=ep_size,
use_residual=use_residual,
num_experts=num_experts,
k=1)
self.linear3 = torch.nn.Linear(hidden_dim, hidden_dim)
self.cross_entropy_loss = torch.nn.CrossEntropyLoss()
def forward(self, x, y):
hidden_dim = self.linear1(x)
output, _, _ = self.moe_1(hidden_dim)
output = self.linear2(output)
output, _, _ = self.moe_2(output)
output = self.linear3(output)
hidden_dim = hidden_dim + output
sentence_embed = hidden_dim.mean(1)
return self.cross_entropy_loss(sentence_embed, y)
class SimplePRMoEModel(torch.nn.Module):
def __init__(self, hidden_dim, num_experts=2, ep_size=1, use_residual=False):
super(SimplePRMoEModel, self).__init__()
self.linear = torch.nn.Linear(hidden_dim, hidden_dim)
linear2 = torch.nn.Linear(hidden_dim, hidden_dim)
self.linear2 = MoE(hidden_size=hidden_dim,
expert=linear2,
ep_size=ep_size,
use_residual=use_residual,
num_experts=num_experts,
k=1)
linear3 = torch.nn.Linear(hidden_dim, hidden_dim)
self.linear3 = MoE(hidden_size=hidden_dim,
expert=linear3,
ep_size=ep_size,
use_residual=use_residual,
num_experts=int(2 * num_experts),
k=1)
self.cross_entropy_loss = torch.nn.CrossEntropyLoss()
def forward(self, x, y):
hidden_dim = x
hidden_dim = self.linear(hidden_dim)
output, _, _ = self.linear2(hidden_dim)
output, _, _ = self.linear3(output)
hidden_dim = hidden_dim + output
sentence_embed = hidden_dim.mean(1)
return self.cross_entropy_loss(sentence_embed, y)
class UnusedParametersModel(SimpleModel):
def __init__(self, hidden_dim, empty_grad=False):
super().__init__(hidden_dim, empty_grad)
self.unused_linear = torch.nn.Linear(hidden_dim, hidden_dim)
class LinearStack(torch.nn.Module):
def __init__(self, input_dim=128, hidden_dim=128, output_dim=128, num_layers=4):
super().__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.hidden_dim = hidden_dim
self.input_layer = torch.nn.Linear(in_features=self.input_dim, out_features=self.hidden_dim)
self.layers = torch.nn.ModuleList([
torch.nn.Linear(in_features=self.hidden_dim, out_features=self.hidden_dim, bias=False)
for x in range(num_layers)
])
self.output_layer = torch.nn.Linear(in_features=self.hidden_dim, out_features=self.output_dim)
self.cross_entropy_loss = torch.nn.CrossEntropyLoss()
def forward(self, x, y):
x = self.input_layer(x)
for layer in self.layers:
x = layer(x)
x = self.output_layer(x)
return x
class LinearStackPipe(PipelineModule):
def __init__(self, input_dim=128, hidden_dim=128, output_dim=128, num_layers=4, **kwargs):
self.input_dim = input_dim
self.output_dim = output_dim
self.hidden_dim = hidden_dim
self.num_layers = num_layers
layers = []
layers.append(LayerSpec(torch.nn.Linear, self.input_dim, self.hidden_dim))
for x in range(self.num_layers):
layers.append(LayerSpec(torch.nn.Linear, self.hidden_dim, self.hidden_dim, bias=False))
layers.append(lambda x: x)
layers.append(LayerSpec(torch.nn.Linear, self.hidden_dim, self.output_dim))
super().__init__(layers=layers, loss_fn=torch.nn.CrossEntropyLoss(), **kwargs)
class SimpleOptimizer(torch.optim.Optimizer):
def __init__(self, params, lr=0.11072018):
defaults = dict(lr=lr)
super(SimpleOptimizer, self).__init__(params, defaults)
def __setstate__(self, state):
super(SimpleOptimizer, self).__setstate__(state)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
d_p = p.grad.data
p.data.add_(-group['lr'], d_p)
return loss
class HybridStateOptimizer(torch.optim.Optimizer):
def __init__(self, params, lr=0.11072018):
defaults = dict(lr=lr)
super(HybridStateOptimizer, self).__init__(params, defaults)
def __setstate__(self, state):
super(HybridStateOptimizer, self).__setstate__(state)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
state = self.state[p]
if len(state) == 0:
state['integer_step'] = 0
state['tensor_step'] = torch.zeros(1, device=p.device)
d_p = p.grad.data
p.data.add_(-group['lr'], d_p)
state['integer_step'] += 1
state['tensor_step'] += 1
return loss
class PLD_SimpleModel(SimpleModel):
def __init__(self, hidden_dim, empty_grad=False):
super(PLD_SimpleModel, self).__init__(hidden_dim, empty_grad)
def forward(self, x, y, **kwargs):
pld = kwargs.get('progressive_layer_drop', False)
theta = kwargs.get('pld_theta', 1.0)
hidden_dim = super(PLD_SimpleModel, self).forward(x, y)
return hidden_dim
def random_dataset(total_samples, hidden_dim, device, dtype=preferred_dtype()):
train_data = torch.randn(total_samples, hidden_dim, device=device, dtype=dtype)
train_label = torch.empty(total_samples, dtype=torch.long, device=device).random_(hidden_dim)
train_dataset = torch.utils.data.TensorDataset(train_data, train_label)
return train_dataset
def random_dataloader(model, total_samples, hidden_dim, device, dtype=preferred_dtype()):
batch_size = model.train_micro_batch_size_per_gpu()
train_dataset = random_dataset(total_samples, hidden_dim, device, dtype=dtype)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size)
return train_loader
def sequence_dataloader(model, total_samples, hidden_dim, device, seq_len: int = 32, dtype=preferred_dtype()):
batch_size = model.train_micro_batch_size_per_gpu()
train_data = torch.randn(total_samples, seq_len, hidden_dim, device=device, dtype=dtype)
train_label = torch.empty(total_samples, dtype=torch.long, device=device).random_(hidden_dim)
train_dataset = torch.utils.data.TensorDataset(train_data, train_label)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size)
return train_loader
def create_config_from_dict(tmpdir, config_dict):
config_path = os.path.join(tmpdir, 'temp_config.json')
with open(config_path, 'w') as fd:
json.dump(config_dict, fd)
return config_path
def create_deepspeed_args():
parser = argparse.ArgumentParser()
args = parser.parse_args(args='')
args.deepspeed = True
if dist.is_initialized():
# We assume up to one full node executing unit tests
assert dist.get_world_size() <= get_accelerator().device_count()
args.local_rank = dist.get_rank()
return args
def args_from_dict(tmpdir, config_dict):
args = create_deepspeed_args()
config_path = create_config_from_dict(tmpdir, config_dict)
args.deepspeed_config = config_path
return args