forked from deepspeedai/DeepSpeed
-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathalexnet_model.py
158 lines (126 loc) · 5.53 KB
/
alexnet_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import pytest
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import deepspeed
import deepspeed.comm as dist
import deepspeed.runtime.utils as ds_utils
from deepspeed.utils.torch import required_torch_version
from deepspeed.accelerator import get_accelerator
from deepspeed.runtime.pipe.module import PipelineModule, LayerSpec
class AlexNet(nn.Module):
def __init__(self, num_classes=10):
super(AlexNet, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=5),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.classifier = nn.Linear(256, num_classes)
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, x, y):
x = self.features(x)
x = x.view(x.size(0), -1)
x = self.classifier(x)
return self.loss_fn(x, y)
class AlexNetPipe(AlexNet):
def to_layers(self):
layers = [*self.features, lambda x: x.view(x.size(0), -1), self.classifier]
return layers
class AlexNetPipeSpec(PipelineModule):
def __init__(self, num_classes=10, **kwargs):
self.num_classes = num_classes
specs = [
LayerSpec(nn.Conv2d, 3, 64, kernel_size=11, stride=4, padding=5),
LayerSpec(nn.ReLU, inplace=True),
LayerSpec(nn.MaxPool2d, kernel_size=2, stride=2),
LayerSpec(nn.Conv2d, 64, 192, kernel_size=5, padding=2),
F.relu,
LayerSpec(nn.MaxPool2d, kernel_size=2, stride=2),
LayerSpec(nn.Conv2d, 192, 384, kernel_size=3, padding=1),
F.relu,
LayerSpec(nn.Conv2d, 384, 256, kernel_size=3, padding=1),
F.relu,
LayerSpec(nn.Conv2d, 256, 256, kernel_size=3, padding=1),
F.relu,
LayerSpec(nn.MaxPool2d, kernel_size=2, stride=2),
lambda x: x.view(x.size(0), -1),
LayerSpec(nn.Linear, 256, self.num_classes), # classifier
]
super().__init__(layers=specs, loss_fn=nn.CrossEntropyLoss(), **kwargs)
# Define this here because we cannot pickle local lambda functions
def cast_to_half(x):
return x.half()
def cifar_trainset(fp16=False):
torchvision = pytest.importorskip("torchvision", minversion="0.5.0")
import torchvision.transforms as transforms
transform_list = [
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
if fp16:
transform_list.append(torchvision.transforms.Lambda(cast_to_half))
transform = transforms.Compose(transform_list)
local_rank = get_accelerator().current_device()
# Only one rank per machine downloads.
dist.barrier()
if local_rank != 0:
dist.barrier()
data_root = os.getenv("TEST_DATA_DIR", "/tmp/")
trainset = torchvision.datasets.CIFAR10(root=os.path.join(data_root, "cifar10-data"),
train=True,
download=True,
transform=transform)
if local_rank == 0:
dist.barrier()
return trainset
def train_cifar(model, config, num_steps=400, average_dp_losses=True, fp16=True, seed=123):
if required_torch_version(min_version=2.1):
fork_kwargs = {"device_type": get_accelerator().device_name()}
else:
fork_kwargs = {}
with get_accelerator().random().fork_rng(devices=[get_accelerator().current_device_name()], **fork_kwargs):
ds_utils.set_random_seed(seed)
# disable dropout
model.eval()
trainset = cifar_trainset(fp16=fp16)
config['local_rank'] = dist.get_rank()
# deepspeed_io defaults to creating a dataloader that uses a
# multiprocessing pool. Our tests use pools and we cannot nest pools in
# python. Therefore we're injecting this kwarg to ensure that no pools
# are used in the dataloader.
old_method = deepspeed.runtime.engine.DeepSpeedEngine.deepspeed_io
def new_method(*args, **kwargs):
kwargs["num_local_io_workers"] = 0
return old_method(*args, **kwargs)
deepspeed.runtime.engine.DeepSpeedEngine.deepspeed_io = new_method
engine, _, _, _ = deepspeed.initialize(config=config,
model=model,
model_parameters=[p for p in model.parameters()],
training_data=trainset)
losses = []
for step in range(num_steps):
loss = engine.train_batch()
losses.append(loss.item())
if step % 50 == 0 and dist.get_rank() == 0:
print(f'STEP={step} LOSS={loss.item()}')
if average_dp_losses:
loss_tensor = torch.tensor(losses).to(get_accelerator().device_name())
dist.all_reduce(loss_tensor)
loss_tensor /= dist.get_world_size()
losses = loss_tensor.tolist()
return losses