forked from PaddlePaddle/PaddleHub
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcanvas.py
59 lines (47 loc) · 1.89 KB
/
canvas.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
# coding:utf-8
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from typing import Callable
import paddle
import numpy as np
import paddlehub.env as hubenv
from paddlehub.vision.utils import get_img_file
from paddlehub.utils.download import download_data
@download_data(url='https://paddlehub.bj.bcebos.com/dygraph/datasets/canvas.tar.gz')
class Canvas(paddle.io.Dataset):
"""
Dataset for colorization. It contains 1193 and 400 pictures for Monet and Vango paintings style, respectively.
We collected data from https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/.
Args:
transform(callmethod) : The method of preprocess images.
mode(str): The mode for preparing dataset.
Returns:
DataSet: An iterable object for data iterating
"""
def __init__(self, transform: Callable, mode: str = 'train'):
self.mode = mode
self.transform = transform
if self.mode == 'train':
self.file = 'train'
elif self.mode == 'test':
self.file = 'test'
self.file = os.path.join(hubenv.DATA_HOME, 'canvas', self.file)
self.data = get_img_file(self.file)
def __getitem__(self, idx: int) -> np.ndarray:
img_path = self.data[idx]
im = self.transform(img_path)
return im
def __len__(self):
return len(self.data)