- python 3
- pytorch >= 0.4.1
- torchvision==0.2.1
- opencv-python==3.4.2.17
- numpy
- tensorboardX
- visdom
ExtremeC3Net (paper)
Hyojin Park, Lars Lowe Sjösund, YoungJoon Yoo, Nojun Kwak.
"ExtremeC3Net: Extreme Lightweight Portrait Segmentation Networks using Advanced C3-modules"
- config file : extremeC3Net.json
- Param : 0.038 M
- Flop : 0.128 G
- IoU : 94.98
SINet (will be soon)
Hyojin Park, Lars Lowe Sjösund, YoungJoon Yoo, Nicolas Monet, Nojun Kwak
SINet: Extreme Lightweight Portrait Segmentation Networks with Spatial Squeeze Modules and Information Blocking Decoder
- config file : SINet.json
- Param : 0.087 M
- Flop : 0.064 G
- IoU : 95.29
- Train
Download datasets
1 . ExtremeC3Net
python main.py --c ExtremeC3Net.json
2 . SINet (soon)
python main.py --c SINet.json
will be soon
We make augmented dataset from Baidu fashion dataset.
The original Baidu dataset link is here
EG1800 dataset link what I used in here
Our augmented dataset is here. We use all train and val dataset for training segmentation model.
If our works is useful to you, please add two papers.
@article{park2019extremec3net,
title={ExtremeC3Net: Extreme Lightweight Portrait Segmentation Networks using Advanced C3-modules},
author={Park, Hyojin and Sj{\"o}sund, Lars Lowe and Yoo, YoungJoon and Kwak, Nojun},
journal={arXiv preprint arXiv:1908.03093},
year={2019}
}
SINet: Extreme Lightweight Portrait Segmentation Networks with Spatial Squeeze Modules and Information Blocking Decoder
( Soon )
We are grateful to Clova AI, NAVER with valuable discussions.
I also appreciate my co-authors Lars Lowe Sjösund and YoungJoon Yoo from Clova AI, NAVER, and Nicolas Monet from NAVER LABS Europe.