Skip to content

HYOJINPARK/ExtPortraitSeg

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Extreme Lightwegith Portrait Segmentation

Requirements

  • python 3
  • pytorch >= 0.4.1
  • torchvision==0.2.1
  • opencv-python==3.4.2.17
  • numpy
  • tensorboardX
  • visdom

Model

ExtremeC3Net (paper)

Hyojin Park, Lars Lowe Sjösund, YoungJoon Yoo, Nojun Kwak.

"ExtremeC3Net: Extreme Lightweight Portrait Segmentation Networks using Advanced C3-modules"

  • config file : extremeC3Net.json
  • Param : 0.038 M
  • Flop : 0.128 G
  • IoU : 94.98

SINet (will be soon)

Hyojin Park, Lars Lowe Sjösund, YoungJoon Yoo, Nicolas Monet, Nojun Kwak

SINet: Extreme Lightweight Portrait Segmentation Networks with Spatial Squeeze Modules and Information Blocking Decoder

  • config file : SINet.json
  • Param : 0.087 M
  • Flop : 0.064 G
  • IoU : 95.29

Run example

  • Train

Download datasets

1 . ExtremeC3Net

python main.py --c ExtremeC3Net.json

2 . SINet (soon)

python main.py --c SINet.json

Trained model

will be soon

Additonal Dataset

We make augmented dataset from Baidu fashion dataset.

The original Baidu dataset link is here

EG1800 dataset link what I used in here

Our augmented dataset is here. We use all train and val dataset for training segmentation model.

Citation

If our works is useful to you, please add two papers.

@article{park2019extremec3net,
  title={ExtremeC3Net: Extreme Lightweight Portrait Segmentation Networks using Advanced C3-modules},
  author={Park, Hyojin and Sj{\"o}sund, Lars Lowe and Yoo, YoungJoon and Kwak, Nojun},
  journal={arXiv preprint arXiv:1908.03093},
  year={2019}
}

SINet: Extreme Lightweight Portrait Segmentation Networks with Spatial Squeeze Modules and Information Blocking Decoder
( Soon )

Acknowledge

We are grateful to Clova AI, NAVER with valuable discussions.

I also appreciate my co-authors Lars Lowe Sjösund and YoungJoon Yoo from Clova AI, NAVER, and Nicolas Monet from NAVER LABS Europe.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages