-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDataHandler.py
250 lines (205 loc) · 9.73 KB
/
DataHandler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import pickle
import numpy as np
from scipy.sparse import csr_matrix, coo_matrix, dok_matrix
from params import args
import scipy.sparse as sp
import dgl
from Utils.TimeLogger import log
import torch as t
from sklearn.preprocessing import OneHotEncoder
device = "cuda:0" if t.cuda.is_available() else "cpu"
class DataHandler:
def __init__(self):
if args.data == 'DBLP':
predir = './data/DBLP/'
if args.data == 'aminer':
predir = './data/aminer/'
self.predir = predir
def loadOneFile(self, filename):
with open(filename, 'rb') as fs:
ret = (pickle.load(fs) != 0).astype(np.float32)
if type(ret) != coo_matrix:
ret = sp.coo_matrix(ret)
return ret
def normalizeAdj(self, mat):
degree = np.array(mat.sum(axis=-1))
dInvSqrt = np.reshape(np.power(degree, -0.5), [-1])
dInvSqrt[np.isinf(dInvSqrt)] = 0.0
dInvSqrtMat = sp.diags(dInvSqrt)
return mat.dot(dInvSqrtMat).transpose().dot(dInvSqrtMat).tocoo()
def makeTorchAdj(self, mat):
# make ui adj
user,item = mat.shape[0],mat.shape[1]
a = sp.csr_matrix((user, user))
b = sp.csr_matrix((item, item))
mat = sp.vstack([sp.hstack([a, mat]), sp.hstack([mat.transpose(), b])])
mat = (mat != 0) * 1.0
# mat = (mat + sp.eye(mat.shape[0])) * 1.0
mat = self.normalizeAdj(mat)
# make cuda tensor
idxs = t.from_numpy(np.vstack([mat.row, mat.col]).astype(np.int64))
vals = t.from_numpy(mat.data.astype(np.float32))
shape = t.Size(mat.shape)
return t.sparse.FloatTensor(idxs, vals, shape).to(device)
def makeTorchuAdj(self, mat):
"""Create tensor-based adjacency matrix for user social graph.
Args:
mat: Adjacency matrix.
Returns:
Tensor-based adjacency matrix.
"""
mat = (mat != 0) * 1.0
mat = (mat + sp.eye(mat.shape[0])) * 1.0
mat = self.normalizeAdj(mat)
# make cuda tensor
idxs = t.from_numpy(np.vstack([mat.row, mat.col]).astype(np.int64))
vals = t.from_numpy(mat.data.astype(np.float32))
shape = t.Size(mat.shape)
return t.sparse.FloatTensor(idxs, vals, shape).to(device)
def makeBiAdj(self, mat):
n_user = mat.shape[0]
n_item = mat.shape[1]
a = sp.csr_matrix((n_user, n_user))
b = sp.csr_matrix((n_item, n_item))
mat = sp.vstack([sp.hstack([a, mat]), sp.hstack([mat.transpose(), b])])
mat = (mat != 0) * 1.0
mat = mat.tocoo()
edge_src,edge_dst = mat.nonzero()
ui_graph = dgl.graph(data=(edge_src, edge_dst),
idtype=t.int32,
num_nodes=mat.shape[0]
)
return ui_graph
def LoadData(self):
if args.data == 'DBLP':
features_list,apa_mat,ata_mat,ava_mat,train,val,test,labels = self.load_dblp_data()
self.feature_list = t.FloatTensor(features_list).to(device)
self.hete_adj1 = dgl.from_scipy(apa_mat).to(device)
self.hete_adj2 = dgl.from_scipy(ata_mat).to(device)
self.hete_adj3 = dgl.from_scipy(ava_mat).to(device)
self.train_idx = train
self.val_idx = val
self.test_idx = test
self.labels = labels
# self.train_idx_generator = index_generator(batch_size=args.batch, indices=self.train_idx)
# self.val_idx_generator = index_generator(batch_size=args.batch, indices=self.val_idx, shuffle=False)
# self.test_idx_generator = index_generator(batch_size=args.batch, indices=self.test_idx, shuffle=False)
self.he_adjs = [self.hete_adj1,self.hete_adj2,self.hete_adj3]
if args.data == 'Freebase':
features_list,mam_mat,mdm_mat,mwm_mat,train,val,test,labels = self.load_Freebase_data()
self.feature_list = t.FloatTensor(features_list).to(device)
self.hete_adj1 = dgl.from_scipy(mam_mat).to(device)
self.hete_adj2 = dgl.from_scipy(mdm_mat).to(device)
self.hete_adj3 = dgl.from_scipy(mwm_mat).to(device)
self.train_idx = train
self.val_idx = val
self.test_idx = test
self.labels = labels
self.he_adjs = [self.hete_adj1,self.hete_adj2,self.hete_adj3]
if args.data == 'aminer':
features_list,pap_mat,prp_mat,pos_mat,train,val,test,labels = self.load_aminer_data()
self.feature_list = t.FloatTensor(features_list).to(device)
self.hete_adj1 = dgl.from_scipy(pap_mat).to(device)
self.hete_adj2 = dgl.from_scipy(prp_mat).to(device)
self.hete_adj3 = dgl.from_scipy(pos_mat).to(device)
self.train_idx = train
self.val_idx = val
self.test_idx = test
self.labels = labels
self.he_adjs = [self.hete_adj1,self.hete_adj2,self.hete_adj3]
def load_dblp_data(self):
features_a = sp.load_npz(self.predir + 'a_feat.npz').astype("float32")
# features_1 = sp.load_npz(self.predir + '/features_1.npz').toarray()
# features_2 = sp.load_npz(self.predir + '/features_2.npy')
features_a = t.FloatTensor(preprocess_features(features_a))
apa_mat=sp.load_npz(self.predir + "apa.npz")
ata_mat=sp.load_npz(self.predir + "apcpa.npz")
ava_mat=sp.load_npz(self.predir + "aptpa.npz")
labels = np.load(self.predir + 'labels.npy')
labels = encode_onehot(labels)
labels= t.FloatTensor(labels).to(device)
train = [np.load(self.predir + "train_" + str(i) + ".npy") for i in args.ratio]
test = [np.load(self.predir + "test_" + str(i) + ".npy") for i in args.ratio]
val = [np.load(self.predir + "val_" + str(i) + ".npy") for i in args.ratio]
train = [t.LongTensor(i) for i in train]
val = [t.LongTensor(i) for i in val]
test = [t.LongTensor(i) for i in test]
return features_a,apa_mat,ata_mat,ava_mat,train,val,test,labels
def load_Freebase_data(self):
type_num = [3492, 2502, 33401, 4459]
# features_1 = sp.load_npz(self.predir + '/features_1.npz').toarray()
# features_2 = sp.load_npz(self.predir + '/features_2.npy')
features_m = sp.eye(type_num[0])
features_m=t.FloatTensor(preprocess_features(features_m))
mam = sp.load_npz(self.predir + "mam.npz")
mdm = sp.load_npz(self.predir + "mdm.npz")
mwm = sp.load_npz(self.predir + "mwm.npz")
labels = np.load(self.predir + 'labels.npy')
labels = encode_onehot(labels)
labels= t.FloatTensor(labels).to(device)
train = [np.load(self.predir + "train_" + str(i) + ".npy") for i in args.ratio]
test = [np.load(self.predir + "test_" + str(i) + ".npy") for i in args.ratio]
val = [np.load(self.predir + "val_" + str(i) + ".npy") for i in args.ratio]
train = [t.LongTensor(i) for i in train]
val = [t.LongTensor(i) for i in val]
test = [t.LongTensor(i) for i in test]
return features_m,mam,mdm,mwm,train,val,test,labels
def load_aminer_data(self):
type_num = [6564, 13329, 35890]
# features_1 = sp.load_npz(self.predir + '/features_1.npz').toarray()
# features_2 = sp.load_npz(self.predir + '/features_2.npy')
features_p = sp.eye(type_num[0])
features_p=t.FloatTensor(preprocess_features(features_p))
pap = sp.load_npz(self.predir + "pap.npz")
prp = sp.load_npz(self.predir + "prp.npz")
pos = sp.load_npz(self.predir + "pos.npz")
labels = np.load(self.predir + 'labels.npy')
labels = encode_onehot(labels)
labels= t.FloatTensor(labels).to(device)
train = [np.load(self.predir + "train_" + str(i) + ".npy") for i in args.ratio]
test = [np.load(self.predir + "test_" + str(i) + ".npy") for i in args.ratio]
val = [np.load(self.predir + "val_" + str(i) + ".npy") for i in args.ratio]
train = [t.LongTensor(i) for i in train]
val = [t.LongTensor(i) for i in val]
test = [t.LongTensor(i) for i in test]
return features_p,pap,prp,pos,train,val,test,labels
def preprocess_features(features):
"""Row-normalize feature matrix and convert to tuple representation"""
rowsum = np.array(features.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
features = r_mat_inv.dot(features)
return features.todense()
def encode_onehot(labels):
labels = labels.reshape(-1, 1)
enc = OneHotEncoder()
enc.fit(labels)
labels_onehot = enc.transform(labels).toarray()
return labels_onehot
class index_generator:
def __init__(self, batch_size, num_data=None, indices=None, shuffle=True):
if num_data is not None:
self.num_data = num_data
self.indices = np.arange(num_data)
if indices is not None:
self.num_data = len(indices)
self.indices = np.copy(indices)
self.batch_size = batch_size
self.iter_counter = 0
self.shuffle = shuffle
if shuffle:
np.random.shuffle(self.indices)
def next(self):
if self.num_iterations_left() <= 0:
self.reset()
self.iter_counter += 1
return np.copy(self.indices[(self.iter_counter - 1) * self.batch_size:self.iter_counter * self.batch_size])
def num_iterations(self):
return int(np.ceil(self.num_data / self.batch_size))
def num_iterations_left(self):
return self.num_iterations() - self.iter_counter
def reset(self):
if self.shuffle:
np.random.shuffle(self.indices)
self.iter_counter = 0