-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstats.nim
469 lines (384 loc) · 14.4 KB
/
stats.nim
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
#
#
# Nim's Runtime Library
# (c) Copyright 2015 Nim contributors
#
# See the file "copying.txt", included in this
# distribution, for details about the copyright.
#
## Statistical analysis framework for performing
## basic statistical analysis of data.
## The data is analysed in a single pass, when it
## is pushed to a `RunningStat` or `RunningRegress` object.
##
## `RunningStat` calculates for a single data set
## - n (data count)
## - min (smallest value)
## - max (largest value)
## - sum
## - mean
## - variance
## - varianceS (sample variance)
## - standardDeviation
## - standardDeviationS (sample standard deviation)
## - skewness (the third statistical moment)
## - kurtosis (the fourth statistical moment)
##
## `RunningRegress` calculates for two sets of data
## - n (data count)
## - slope
## - intercept
## - correlation
##
## Procs are provided to calculate statistics on `openArray`s.
##
## However, if more than a single statistical calculation is required, it is more
## efficient to push the data once to a `RunningStat` object and then
## call the numerous statistical procs for the `RunningStat` object:
runnableExamples:
from std/math import almostEqual
template `~=`(a, b: float): bool = almostEqual(a, b)
var statistics: RunningStat ## Must be var
statistics.push(@[1.0, 2.0, 1.0, 4.0, 1.0, 4.0, 1.0, 2.0])
doAssert statistics.n == 8
doAssert statistics.mean() ~= 2.0
doAssert statistics.variance() ~= 1.5
doAssert statistics.varianceS() ~= 1.714285714285715
doAssert statistics.skewness() ~= 0.8164965809277261
doAssert statistics.skewnessS() ~= 1.018350154434631
doAssert statistics.kurtosis() ~= -1.0
doAssert statistics.kurtosisS() ~= -0.7000000000000008
block:
var
a4 = [6, 3, 9, 1]
a5 = [4, 6, 3, 9, 1]
a: array[len(a4), int]
ax: array[len(a5), int]
func myCmp(x, y: int): int =
if x == y: 0 elif x < y: -1 else: 1
a = a4
doAssert median(a, myCmp) == 4.5
a = a4
doAssert median(a, mdlow, myCmp) == 3
a = a4
doAssert median(a, mdhigh, myCmp) == 6
doAssert median[int](a5) == 4
from math import FloatClass, sqrt, pow, round
{.push debugger: off.} # the user does not want to trace a part
# of the standard library!
{.push checks: off, line_dir: off, stack_trace: off.}
type
RunningStat* = object ## An accumulator for statistical data.
n*: int ## amount of pushed data
min*, max*, sum*: float ## self-explaining
mom1, mom2, mom3, mom4: float ## statistical moments, mom1 is mean
RunningRegress* = object ## An accumulator for regression calculations.
n*: int ## amount of pushed data
x_stats*: RunningStat ## stats for the first set of data
y_stats*: RunningStat ## stats for the second set of data
s_xy: float ## accumulated data for combined xy
# ----------- RunningStat --------------------------
proc clear*(s: var RunningStat) =
## Resets `s`.
s.n = 0
s.min = toBiggestFloat(int.high)
s.max = 0.0
s.sum = 0.0
s.mom1 = 0.0
s.mom2 = 0.0
s.mom3 = 0.0
s.mom4 = 0.0
proc push*(s: var RunningStat, x: float) =
## Pushes a value `x` for processing.
if s.n == 0: s.min = x
inc(s.n)
# See Knuth TAOCP vol 2, 3rd edition, page 232
if s.min > x: s.min = x
if s.max < x: s.max = x
s.sum += x
let n = toFloat(s.n)
let delta = x - s.mom1
let delta_n = delta / toFloat(s.n)
let delta_n2 = delta_n * delta_n
let term1 = delta * delta_n * toFloat(s.n - 1)
s.mom4 += term1 * delta_n2 * (n*n - 3*n + 3) +
6*delta_n2*s.mom2 - 4*delta_n*s.mom3
s.mom3 += term1 * delta_n * (n - 2) - 3*delta_n*s.mom2
s.mom2 += term1
s.mom1 += delta_n
proc push*(s: var RunningStat, x: int) =
## Pushes a value `x` for processing.
##
## `x` is simply converted to `float`
## and the other push operation is called.
s.push(toFloat(x))
proc push*(s: var RunningStat, x: openArray[float|int]) =
## Pushes all values of `x` for processing.
##
## Int values of `x` are simply converted to `float` and
## the other push operation is called.
for val in x:
s.push(val)
proc mean*(s: RunningStat): float =
## Computes the current mean of `s`.
result = s.mom1
proc variance*(s: RunningStat): float =
## Computes the current population variance of `s`.
result = s.mom2 / toFloat(s.n)
proc varianceS*(s: RunningStat): float =
## Computes the current sample variance of `s`.
if s.n > 1: result = s.mom2 / toFloat(s.n - 1)
proc standardDeviation*(s: RunningStat): float =
## Computes the current population standard deviation of `s`.
result = sqrt(variance(s))
proc standardDeviationS*(s: RunningStat): float =
## Computes the current sample standard deviation of `s`.
result = sqrt(varianceS(s))
proc skewness*(s: RunningStat): float =
## Computes the current population skewness of `s`.
result = sqrt(toFloat(s.n)) * s.mom3 / pow(s.mom2, 1.5)
proc skewnessS*(s: RunningStat): float =
## Computes the current sample skewness of `s`.
let s2 = skewness(s)
result = sqrt(toFloat(s.n*(s.n-1)))*s2 / toFloat(s.n-2)
proc kurtosis*(s: RunningStat): float =
## Computes the current population kurtosis of `s`.
result = toFloat(s.n) * s.mom4 / (s.mom2 * s.mom2) - 3.0
proc kurtosisS*(s: RunningStat): float =
## Computes the current sample kurtosis of `s`.
result = toFloat(s.n-1) / toFloat((s.n-2)*(s.n-3)) *
(toFloat(s.n+1)*kurtosis(s) + 6)
proc `+`*(a, b: RunningStat): RunningStat =
## Combines two `RunningStat`s.
##
## Useful when performing parallel analysis of data series
## and needing to re-combine parallel result sets.
result.clear()
result.n = a.n + b.n
let delta = b.mom1 - a.mom1
let delta2 = delta*delta
let delta3 = delta*delta2
let delta4 = delta2*delta2
let n = toFloat(result.n)
result.mom1 = (a.n.float*a.mom1 + b.n.float*b.mom1) / n
result.mom2 = a.mom2 + b.mom2 + delta2 * a.n.float * b.n.float / n
result.mom3 = a.mom3 + b.mom3 +
delta3 * a.n.float * b.n.float * (a.n.float - b.n.float)/(n*n);
result.mom3 += 3.0*delta * (a.n.float*b.mom2 - b.n.float*a.mom2) / n
result.mom4 = a.mom4 + b.mom4 +
delta4*a.n.float*b.n.float * toFloat(a.n*a.n - a.n*b.n + b.n*b.n) /
(n*n*n)
result.mom4 += 6.0*delta2 * (a.n.float*a.n.float*b.mom2 + b.n.float*b.n.float*a.mom2) /
(n*n) +
4.0*delta*(a.n.float*b.mom3 - b.n.float*a.mom3) / n
result.max = max(a.max, b.max)
result.min = min(a.min, b.min)
proc `+=`*(a: var RunningStat, b: RunningStat) {.inline.} =
## Adds the `RunningStat` `b` to `a`.
a = a + b
proc `$`*(a: RunningStat): string =
## Produces a string representation of the `RunningStat`. The exact
## format is currently unspecified and subject to change. Currently
## it contains:
##
## - the number of probes
## - min, max values
## - sum, mean and standard deviation.
result = "RunningStat(\n"
result.add " number of probes: " & $a.n & "\n"
result.add " max: " & $a.max & "\n"
result.add " min: " & $a.min & "\n"
result.add " sum: " & $a.sum & "\n"
result.add " mean: " & $a.mean & "\n"
result.add " std deviation: " & $a.standardDeviation & "\n"
result.add ")"
# ---------------------- standalone array/seq stats ---------------------
proc mean*[T](x: openArray[T]): float =
## Computes the mean of `x`.
var rs: RunningStat
rs.push(x)
result = rs.mean()
proc variance*[T](x: openArray[T]): float =
## Computes the population variance of `x`.
var rs: RunningStat
rs.push(x)
result = rs.variance()
proc varianceS*[T](x: openArray[T]): float =
## Computes the sample variance of `x`.
var rs: RunningStat
rs.push(x)
result = rs.varianceS()
proc standardDeviation*[T](x: openArray[T]): float =
## Computes the population standard deviation of `x`.
var rs: RunningStat
rs.push(x)
result = rs.standardDeviation()
proc standardDeviationS*[T](x: openArray[T]): float =
## Computes the sample standard deviation of `x`.
var rs: RunningStat
rs.push(x)
result = rs.standardDeviationS()
proc skewness*[T](x: openArray[T]): float =
## Computes the population skewness of `x`.
var rs: RunningStat
rs.push(x)
result = rs.skewness()
proc skewnessS*[T](x: openArray[T]): float =
## Computes the sample skewness of `x`.
var rs: RunningStat
rs.push(x)
result = rs.skewnessS()
proc kurtosis*[T](x: openArray[T]): float =
## Computes the population kurtosis of `x`.
var rs: RunningStat
rs.push(x)
result = rs.kurtosis()
proc kurtosisS*[T](x: openArray[T]): float =
## Computes the sample kurtosis of `x`.
var rs: RunningStat
rs.push(x)
result = rs.kurtosisS()
import random
# Partition using Lomuto partition scheme
proc partition[T](arr: var openArray[T], K: Natural,
myCmp: proc(x, y: T): int): int =
let
left= arr.low
right= arr.high
pivot = arr[K]
var pInd = K # Pick `pIndex` as a pivot from the list
if pInd != right: swap(arr[pInd], arr[right]) # Move pivot to end
#[
elements less than the pivot will be pushed to the left of `pIndex`;
elements more than the pivot will be pushed to the right of `pIndex`;
equal elements can go either way ]#
pInd = left
#[ each time we find an element less than or equal to the pivot, `pInd`
is incremented, and that element would be placed before the pivot. ]#
for i in left ..< right:
if myCmp(arr[i], pivot) <= 0: # arr[i] <= pivot
if i != pInd: swap(arr[i], arr[pInd])
inc(pInd)
# Move pivot to its place
if pInd < right: swap(arr[pInd], arr[right])
result = pInd # arr[i] <= pivot for i in left..pInd
proc quickSelect*[T](arr: var openArray[T], left, right, K: Natural,
myCmp: proc(x, y: T): int {.nimcall.} = cmp[T]): T =
##[
Returns the ``K``'th smallest element in a list within `left / right`
(i.e., ``left <= K <= right``).
If ``K == left`` the smallest element, and
if ``K == right`` the largest element of **arr** will be returned.
.. warning:: `arr` will be modified in general
]##
assert(left <= K and K <= right)
# If the list contains only one element, return that element
if left == right: return arr[left]
# select `pInd` between left and right
var pInd = left + rand(right-left)
pInd = partition(arr, pInd, myCmp)
# The pivot is in its sorted position
if K == pInd:
result= arr[K]
elif K < pInd: # if K is less than the pivot index
result= quickSelect(arr, left, pInd-1, K, myCmp)
# if K is greater than the pivot index
else:
result= quickSelect(arr, pInd+1, right, K, myCmp)
type MedianMode* = enum
mdlow, mdhigh
proc median*[T](arr: var openArray[T], Mode:MedianMode,
myCmp: proc(x, y: T): int {.nimcall.} = cmp[T]): T =
##[
The **median** `M` of an array/sequence of comparable items is defined such that
in case the array/sequence has *odd* length :
``(m-1)/2`` elements are lower or equal and
``(m-1)/2`` elements are higher or equal than `M` .
In this case ``Mode == mdlow`` and ``Mode == mdhigh`` give the same result.
in case the array/sequence has *even* length the median is only defined for
arrays of `SomeNumber` elements - see below -
In general **Mode == mdlow** has the property that
``m/2`` elements are less than or equal this value and
``m/2+1`` elements are greater than or equal this value.
**Mode == mdhigh** has the property that
``m/2`` elements are greater or equal than this value and
``m/2+1`` elements are less or equal than this value.
.. warning:: `arr` will be modified in general
]##
let
left= arr.low
right= arr.high
if Mode == mdlow :
quickSelect(arr, left, right, (right+left) div 2, myCmp)
else :
quickSelect(arr, left, right, (right+left+1) div 2, myCmp)
proc median*[T: SomeNumber](arr: var openArray[T],
myCmp: proc(x, y: T): int {.nimcall.} = cmp[T]): float =
##[This is a special version which returns a float value.
If the length of `arr` is *even*, it returns
``float( median(arr,mdlow,myCmp) + median(arr,mdhigh,myCmp) )*0.5``
.. warning:: `arr` will be modified in general
]##
let
N = arr.len
K = arr.low + (N-1) div 2
if (N and 1) == 1: # N is odd
result = float(quickSelect(arr, arr.low, arr.high, K, myCmp))
else:
result = float(quickSelect(arr, arr.low, arr.high, K, myCmp) +
quickSelect(arr, arr.low, arr.high, K+1, myCmp))*0.5
# ---------------------- Running Regression -----------------------------
proc clear*(r: var RunningRegress) =
## Resets `r`.
r.x_stats.clear()
r.y_stats.clear()
r.s_xy = 0.0
r.n = 0
proc push*(r: var RunningRegress, x, y: float) =
## Pushes two values `x` and `y` for processing.
r.s_xy += (r.x_stats.mean() - x)*(r.y_stats.mean() - y) *
toFloat(r.n) / toFloat(r.n + 1)
r.x_stats.push(x)
r.y_stats.push(y)
inc(r.n)
proc push*(r: var RunningRegress, x, y: int) {.inline.} =
## Pushes two values `x` and `y` for processing.
##
## `x` and `y` are converted to `float`
## and the other push operation is called.
r.push(toFloat(x), toFloat(y))
proc push*(r: var RunningRegress, x, y: openArray[float|int]) =
## Pushes two sets of values `x` and `y` for processing.
assert(x.len == y.len)
for i in 0..<x.len:
r.push(x[i], y[i])
proc slope*(r: RunningRegress): float =
## Computes the current slope of `r`.
let s_xx = r.x_stats.varianceS()*toFloat(r.n - 1)
result = r.s_xy / s_xx
proc intercept*(r: RunningRegress): float =
## Computes the current intercept of `r`.
result = r.y_stats.mean() - r.slope()*r.x_stats.mean()
proc correlation*(r: RunningRegress): float =
## Computes the current correlation of the two data
## sets pushed into `r`.
let t = r.x_stats.standardDeviation() * r.y_stats.standardDeviation()
result = r.s_xy / (toFloat(r.n) * t)
proc `+`*(a, b: RunningRegress): RunningRegress =
## Combines two `RunningRegress` objects.
##
## Useful when performing parallel analysis of data series
## and needing to re-combine parallel result sets
result.clear()
result.x_stats = a.x_stats + b.x_stats
result.y_stats = a.y_stats + b.y_stats
result.n = a.n + b.n
let delta_x = b.x_stats.mean() - a.x_stats.mean()
let delta_y = b.y_stats.mean() - a.y_stats.mean()
result.s_xy = a.s_xy + b.s_xy +
toFloat(a.n*b.n)*delta_x*delta_y/toFloat(result.n)
proc `+=`*(a: var RunningRegress, b: RunningRegress) =
## Adds the `RunningRegress` `b` to `a`.
a = a + b
{.pop.}
{.pop.}