Skip to content

Latest commit

 

History

History
92 lines (63 loc) · 2.77 KB

README.md

File metadata and controls

92 lines (63 loc) · 2.77 KB

ExplainCPE: A Free-text Explanation Benchmark of Chinese Pharmacist Examination

This is the main page of our EMNLP 2023 paper ExplainCPE.

Contents

Overview

ExplainCPE is a challenging medical benchmark in Simplified Chinese, aimed at testing the medical interpretability of LLMs.

Additionally, we have collected over 7,000 instances from various sources, including the internet and exercise books about The National Licensed Pharmacist Examination in China.

Following is the structure of the repository.

  • dataset directory contains train, dev and test set.
  • dataset/results directory contains responses of LLMs.

Dataset

Data Statistics

# Train # Dev # Test
Question 6867 500 189
Avg. words of question 28.31 28.44 37.79
Avg. words of option 8.12 8.55 9.76
Avg. words of explanation 120.52 116.32 171.94
Max words of question 338 259 164
Max words of option 146 95 57
Max words of explanation 1011 604 685
Options per problem 5

Data Example

Data Example

Data Format

{
"id": 0,
"question": "既可以通过口腔给药,又可以通过鼻腔、皮肤或肺部给药的剂型是",
"options": [
    "口服液",
    "吸入制剂",
    "贴剂",
    "喷雾剂",
    "粉雾剂"
],
"answer": "D",
"explanation": "本题考查剂型的分类。喷雾剂多数是根据病情需要临时配制而成。喷雾剂的品种越来越多,既可作局部用药,亦可治疗全身性疾病。口服液为口服给药。吸入制剂为肺部给药。贴剂为皮肤给药。粉雾剂为肺部给药。故本题选D。"
}

Benchmark

Model Acc(%) Rouge-1 Rouge-2 Rouge-L
GPT-4 75.7 0.384 0.140 0.247
ChatGPT 54.5 0.341 0.114 0.216
GPT-3.5 40.2 - - -
ChatGLM-6B 29.1 0.315 0.099 0.184
BELLE-7B-2M 33.3 - - -
ChatYuan 27.0 - - -

Citation

If you use our dataset in your work, please cite us.

@misc{li2023emnlp,
  title = {ExplainCPE: A Free-text Explanation Benchmark of Chinese Pharmacist Examination},
  author = {Li, Dongfang and Yu, Jindi and Hu, Baotian and Xu, Zhenran and Zhang, Min},
  publisher = {arXiv},
  year = {2023},
  url = {https://arxiv.org/abs/2305.12945}
}