forked from XuyangBai/PPF-FoldNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
35 lines (29 loc) · 1017 Bytes
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch
import time
from dataset import SunDataset
def get_dataloader(root, split, batch_size=1, num_patches=32, num_points_per_patch=1024, num_workers=4, shuffle=True,
on_the_fly=True):
dataset = SunDataset(
root=root,
split=split,
num_patches=num_patches,
num_points_per_patch=num_points_per_patch,
on_the_fly=on_the_fly
)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=shuffle,
num_workers=num_workers
)
return dataloader
if __name__ == '__main__':
dataset = 'sun3d'
dataroot = "/data/3DMatch/whole"
trainloader = get_dataloader(dataroot, split='test', batch_size=32)
start_time = time.time()
print(f"Totally {len(trainloader)} iter.")
for iter, (patches, ids) in enumerate(trainloader):
if iter % 100 == 0:
print(f"Iter {iter}: {time.time() - start_time} s")
print(f"On the fly: {time.time() - start_time}")