-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlinreg_sns_ep.m
410 lines (302 loc) · 13.4 KB
/
linreg_sns_ep.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
function [fa, si, converged, subfunctions] = linreg_sns_ep(y, x, pr, op, w_feedbacks, gamma_feedbacks, si)
% -- Likelihood (y are data, f are feedbacks):
% p(y_i|x_i,w,sigma2) = N(y_i|w'x_i, sigma2)
% p(f_w_j|w_j,eta2) = N(f_w_j|w_j, eta2)
% p(f_gamma_j|gamma_j) = I(gamma_j=1) Bernoulli(f_gamma_j|p_u) + I(gamma_j=0) Bernoulli(f_gamma_j|1-p_u)
% -- Prior:
% p(w_j|gamma_j=1) = Normal(w_j|0, tau2)
% p(w_j|gamma_j=0) = delta(w_j)
% p(gamma_j|rho) = Bernoulli(gamma_j|rho)
% p(rho) = Beta(rho|rho_a, rho_b)
% p(sigma2^-1) = Gamma(sigma2^-1|sigma2_a,sigma2_b) or fixed sigma2
% -- Approximation;
% q(w) = Normal(w|w.Mean, w_Var), w_Var = w.Tau^-1
% q(gamma) = \prod_j Bernoulli(gamma_j|gamma.p_j)
% q(sigma2^-1) = Gamma(sigma2^-1|sigma2_a,sigma2_b), mean: sigma2.imean
% q(rho) = Beta(rho|rho.a,rho.b)
%
% sigma2 and rho are updated using VB (if not fixed), other terms using EP.
%
% Inputs:
% y target values (n x 1)
% x covariates (n x m)
% pr prior and other fixed model parameters (struct)
% op options for the EP algorithm (struct)
% w_feedbacks values (1st column) and indices (2nd column) of feedback (n_w_feedbacks x 2)
% gamma_feedbacks values (1st column, 0/1) and indices (2nd column) of feedback (n_gamma_feedbacks x 2)
% si if given, (some of) site parameters initialized to these
%
% Outputs:
% fa EP posterior approximation (struct)
% si EP site terms (struct)
% converged did EP converge or hit max_iter (1/0)
%
% Tomi Peltola, tomi.peltola@aalto.fi
if nargin < 5
w_feedbacks = [];
end
if nargin < 6
gamma_feedbacks = [];
end
[n, m] = size(x);
pr.n = n;
pr.m = m;
pr.p_u_nat = log(pr.p_u) - log1p(-pr.p_u);
pr.yy = y' * y; % precompute
pr.xy = x' * y; % precompute
pr.xx = x' * x; % precompute
n_w_feedbacks = size(w_feedbacks, 1);
n_gamma_feedbacks = size(gamma_feedbacks, 1);
%% initialize (if si is given, prior sites are not re-initialized, but likelihood is)
if nargin < 7 || isempty(si)
si.w_prior.normal_mu = zeros(m, 1);
si.w_prior.normal_tau = (1 / pr.tau2) * ones(m, 1);
si.w_prior.bernoulli_p_nat = zeros(m, 1);
end
S_f = zeros(m, m);
F_f = zeros(m, 1);
if n_w_feedbacks > 0
for i = 1:n_w_feedbacks
S_f(w_feedbacks(i, 2), w_feedbacks(i, 2)) = 1;
F_f(w_feedbacks(i, 2)) = w_feedbacks(i, 1);
end
end
si.w_feedback.normal_Tau = (1 / pr.eta2) * S_f;
si.w_feedback.normal_Mu = (1 / pr.eta2) * F_f;
if isfield(pr, 'sigma2_prior') && pr.sigma2_prior
si.y_lik.gamma_a = 0.5 * n;
si.y_lik.gamma_b = 0.5 * pr.yy;
sigma2_imean = (pr.sigma2_a + si.y_lik.gamma_a) / (pr.sigma2_b + si.y_lik.gamma_b);
si.y_lik.normal_Tau = sigma2_imean * pr.xx;
si.y_lik.normal_Mu = sigma2_imean * pr.xy;
else
si.y_lik.normal_Tau = (1 / pr.sigma2) * pr.xx;
si.y_lik.normal_Mu = (1 / pr.sigma2) * pr.xy;
pr.sigma2_prior = 0;
end
si.gamma_feedback.bernoulli_p_nat = zeros(m, 1);
if isfield(pr, 'rho_prior') && pr.rho_prior
rho_ = pr.rho_a / (pr.rho_a + pr.rho_b);
si.gamma_prior.bernoulli_p_nat = log(rho_) - log1p(-rho_);
si.gamma_prior.beta_a = zeros(m, 1);
si.gamma_prior.beta_b = zeros(m, 1);
else
si.gamma_prior.bernoulli_p_nat = log(pr.rho) - log1p(-pr.rho);
pr.rho_prior = 0;
end
% full approximation
fa = compute_full_approximation(si, pr);
% convergence diagnostics
conv.P_gamma_old = Inf * ones(m, 1);
conv.z_old = Inf * ones(m, 1);
%% loop parallel EP
for iter = 1:op.max_iter
%% w prior updates
% cavity
ca_w_prior = compute_sns_prior_cavity(fa, si.w_prior, pr);
% moments of tilted dists
[ti_w_prior, z_w] = compute_sns_prior_tilt(ca_w_prior, pr);
% site updates
si.w_prior = update_sns_prior_sites(si.w_prior, ca_w_prior, ti_w_prior, op);
% full approx update
fa = compute_full_approximation_w(fa, si, pr);
fa = compute_full_approximation_gamma(fa, si, pr);
%% gamma prior updates, EP for gamma, VB for rho
if pr.rho_prior
% VB
si.gamma_prior = update_bernoulli_sites_vb(si.gamma_prior, fa.gamma.p, op);
fa = compute_full_approximation_rho(fa, si, pr);
% EP
si.gamma_prior = update_bernoulli_sites_ep(si.gamma_prior, fa.gamma.p_nat, fa.rho.a, fa.rho.b, op);
fa = compute_full_approximation_gamma(fa, si, pr);
end
%% sigma2 and (the associated) likelihood VB update
if pr.sigma2_prior
% sigma2 update
si.y_lik = update_gaussian_lik_prec_site_vb(si.y_lik, fa.w.Tau_chol, fa.w.Mean, x, pr.yy, pr.xy, pr.xx, op);
fa = compute_full_approximation_sigma2(fa, si, pr);
% likelihood update
si.y_lik = update_gaussian_lik_normal_site_vb(si.y_lik, fa.sigma2.imean, pr.xx, pr.xy);
% full approx update
fa = compute_full_approximation_w(fa, si, pr);
end
%% gamma feedback updates
if n_gamma_feedbacks > 0
% cavity
ca_gf = compute_bernoulli_lik_cavity(fa.gamma.p_nat, si.gamma_feedback, gamma_feedbacks(:, 2));
% moments of tilted dists
ti_gf = compute_bernoulli_lik_tilt(ca_gf, pr, gamma_feedbacks(:, 1));
% site updates
si.gamma_feedback = update_bernoulli_lik_sites(si.gamma_feedback, ca_gf, ti_gf, op, gamma_feedbacks(:, 2));
% full approx update (update only gamma part as only those sites have been updated)
fa = compute_full_approximation_gamma(fa, si, pr);
end
%% show progress and check for convergence
[converged, conv] = report_progress_and_check_convergence(conv, iter, z_w, fa, op);
if converged
if op.verbosity > 0
fprintf(1, 'EP converged on iteration %d\n', iter);
end
break
end
%% update damp
op.damp = op.damp * op.damp_decay;
end
if op.verbosity > 0 && converged == 0
fprintf(1, 'EP hit maximum number of iterations\n');
end
if nargout > 3
subfunctions.update_gaussian_lik_normal_site_vb = @update_gaussian_lik_normal_site_vb;
subfunctions.update_gaussian_lik_prec_site_vb = @update_gaussian_lik_prec_site_vb;
subfunctions.update_bernoulli_sites_vb = @update_bernoulli_sites_vb;
subfunctions.update_bernoulli_sites_ep = @update_bernoulli_sites_ep;
subfunctions.compute_bernoulli_lik_cavity = @compute_bernoulli_lik_cavity;
subfunctions.compute_bernoulli_lik_tilt = @compute_bernoulli_lik_tilt;
subfunctions.update_bernoulli_lik_sites = @update_bernoulli_lik_sites;
subfunctions.compute_sns_prior_cavity = @compute_sns_prior_cavity;
subfunctions.compute_sns_prior_tilt = @compute_sns_prior_tilt;
subfunctions.update_sns_prior_sites = @update_sns_prior_sites;
subfunctions.compute_full_approximation = @compute_full_approximation;
subfunctions.compute_full_approximation_rho = @compute_full_approximation_rho;
subfunctions.compute_full_approximation_sigma2 = @compute_full_approximation_sigma2;
subfunctions.compute_full_approximation_w = @compute_full_approximation_w;
subfunctions.compute_full_approximation_gamma = @compute_full_approximation_gamma;
end
end
function si = update_gaussian_lik_normal_site_vb(si, prec_mean, xx, xy)
si.normal_Tau = prec_mean * xx;
si.normal_Mu = prec_mean * xy;
end
function si = update_gaussian_lik_prec_site_vb(si, normal_Tau_chol, normal_Mean, x, yy, xy, xx, op)
tr_tmp = x / normal_Tau_chol';
si.gamma_b = (1 - op.damp) * si.gamma_b + op.damp * (0.5 * (yy - 2 * (normal_Mean' * xy) + tr_tmp(:)' * tr_tmp(:) + normal_Mean' * xx * normal_Mean));
%si.lik.sigma2.b = 0.5 * (pr.yy - 2 * (fa.w.Mean' * pr.xy) + tr_tmp(:)' * tr_tmp(:) + fa.w.Mean' * pr.xx * fa.w.Mean);
end
function si = update_bernoulli_sites_vb(si, p, op)
% This updates the conditioning variable (probability parameter).
si.beta_a = (1 - op.damp) * si.beta_a + op.damp * p;
si.beta_b = (1 - op.damp) * si.beta_b + op.damp * (1 - p);
%si.prior.rho.a = fa.gamma.p;
%si.prior.rho.b = (1 - fa.gamma.p);
end
function si = update_bernoulli_sites_ep(si, fa_bernoulli_p_nat, fa_beta_a, fa_beta_b, op)
% This updates the main variable (indicator variable).
% cavity
cav_nat = fa_bernoulli_p_nat - si.bernoulli_p_nat;
cav_a_m_cav_nat = (fa_beta_a - si.beta_a - 1 + eps) .* exp(cav_nat);
cav_b = fa_beta_b - si.beta_b - 1 + eps;
% tilt
ti_mean = cav_a_m_cav_nat ./ (cav_a_m_cav_nat + cav_b);
ti_mean = max(min(ti_mean, 1-eps), eps);
% site update
si.bernoulli_p_nat = (1 - op.damp) * si.bernoulli_p_nat + op.damp * (log(ti_mean) - log1p(-ti_mean) - cav_nat);
end
function ca = compute_bernoulli_lik_cavity(bernoulli_p_nat, si, inds)
if nargin < 3
ca.bernoulli_p_nat = bernoulli_p_nat - si.bernoulli_p_nat;
else
ca.bernoulli_p_nat = bernoulli_p_nat(inds) - si.bernoulli_p_nat(inds);
end
end
function ti = compute_bernoulli_lik_tilt(ca, pr, observations)
ti.bernoulli_mean = 1 ./ (1 + exp(-(ca.bernoulli_p_nat + (2 * observations - 1) .* pr.p_u_nat)));
ti.bernoulli_mean = max(min(ti.bernoulli_mean, 1-eps), eps);
end
function si = update_bernoulli_lik_sites(si, ca, ti, op, inds)
if nargin < 5
si.bernoulli_p_nat = (1 - op.damp) * si.bernoulli_p_nat + op.damp * (log(ti.bernoulli_mean) - log1p(-ti.bernoulli_mean) - ca.bernoulli_p_nat);
else
si.bernoulli_p_nat(inds) = (1 - op.damp) * si.bernoulli_p_nat(inds) + op.damp * (log(ti.bernoulli_mean) - log1p(-ti.bernoulli_mean) - ca.bernoulli_p_nat);
end
end
function ca = compute_sns_prior_cavity(fa, si, pr)
m = pr.m;
tmp = fa.w.Tau_chol \ eye(m);
var_w = sum(tmp.^2)';
denom = (1 - si.normal_tau .* var_w);
ca.normal_tau = denom ./ var_w;
ca.normal_mean = (fa.w.Mean - var_w .* si.normal_mu) ./ denom;
ca.bernoulli_p_nat = fa.gamma.p_nat - si.bernoulli_p_nat;
ca.bernoulli_p = 1 ./ (1 + exp(-ca.bernoulli_p_nat));
end
function [ti, z] = compute_sns_prior_tilt(ca, pr)
t = ca.normal_tau + 1 ./ pr.tau2;
g_var = 1 ./ ca.normal_tau; % for gamma0
mcav2 = ca.normal_mean.^2;
log_z_gamma0 = log1p(-ca.bernoulli_p) - 0.5 * log(g_var) - 0.5 * mcav2 ./ g_var;
g_var = pr.tau2 + g_var; % for gamma1
log_z_gamma1 = log(ca.bernoulli_p) - 0.5 * log(g_var) - 0.5 * mcav2 ./ g_var;
z_gamma0 = exp(log_z_gamma0 - log_z_gamma1);
z_gamma1 = ones(size(log_z_gamma1));
z = 1 + z_gamma0;
ti.normal_mean = z_gamma1 .* (ca.normal_tau .* ca.normal_mean) ./ t ./ z;
ti_normal_e2 = z_gamma1 .* (1 ./ t + 1 ./ t.^2 .* (ca.normal_tau .* ca.normal_mean).^2) ./ z;
ti.normal_var = ti_normal_e2 - ti.normal_mean.^2;
ti.bernoulli_mean = z_gamma1 ./ z;
ti.bernoulli_mean = max(min(ti.bernoulli_mean, 1-eps), eps);
end
function [si, nonpositive_cavity_vars, nonpositive_site_var_proposals] = update_sns_prior_sites(si, ca, ti, op)
nonpositive_site_var_proposals = false;
% skip negative cavs
update_inds = ca.normal_tau(:) > 0;
nonpositive_cavity_vars = ~all(update_inds);
new_tau_w_site = 1 ./ ti.normal_var - ca.normal_tau;
switch op.robust_updates
case 0
case 1
inds_tmp = new_tau_w_site(:) > 0;
nonpositive_site_var_proposals = ~all(inds_tmp);
update_inds = update_inds & inds_tmp;
case 2
inds = new_tau_w_site(:) <= 0;
new_tau_w_site(inds) = op.min_site_prec;
ti.normal_var(inds) = 1./(op.min_site_prec + ca.normal_tau(inds));
end
new_mu_w_site = ti.normal_mean ./ ti.normal_var - ca.normal_tau .* ca.normal_mean;
si.normal_tau(update_inds) = (1 - op.damp) * si.normal_tau(update_inds) + op.damp * new_tau_w_site(update_inds);
si.normal_mu(update_inds) = (1 - op.damp) * si.normal_mu(update_inds) + op.damp * new_mu_w_site(update_inds);
si.bernoulli_p_nat(update_inds) = (1 - op.damp) * si.bernoulli_p_nat(update_inds) + op.damp * (log(ti.bernoulli_mean(update_inds)) - log1p(-ti.bernoulli_mean(update_inds)) - ca.bernoulli_p_nat(update_inds));
end
function fa = compute_full_approximation(si, pr)
fa = struct;
fa = compute_full_approximation_w(fa, si, pr);
fa = compute_full_approximation_gamma(fa, si, pr);
if pr.sigma2_prior
fa = compute_full_approximation_sigma2(fa, si, pr);
end
if pr.rho_prior
fa = compute_full_approximation_rho(fa, si, pr);
end
end
function fa = compute_full_approximation_rho(fa, si, pr)
% These are Beta distribution parameters in the common parametrization;
% pr params are also, while si params are natural parameters.
fa.rho.a = sum(si.gamma_prior.beta_a) + pr.rho_a;
fa.rho.b = sum(si.gamma_prior.beta_b) + pr.rho_b;
end
function fa = compute_full_approximation_sigma2(fa, si, pr)
% a and b are in the common parametrization of Gamma (the one with mean = a/b)
fa.sigma2.imean = (pr.sigma2_a + si.y_lik.gamma_a) / (pr.sigma2_b + si.y_lik.gamma_b); % note: approx is for sigma2^-1
end
function fa = compute_full_approximation_w(fa, si, pr)
% m x m and m x 1
fa.w.Tau = si.y_lik.normal_Tau + si.w_feedback.normal_Tau + diag(si.w_prior.normal_tau);
fa.w.Tau_chol = chol(fa.w.Tau, 'lower');
fa.w.Mu = si.y_lik.normal_Mu + si.w_feedback.normal_Mu + si.w_prior.normal_mu;
fa.w.Mean = fa.w.Tau_chol' \ (fa.w.Tau_chol \ fa.w.Mu);
end
function fa = compute_full_approximation_gamma(fa, si, pr)
fa.gamma.p_nat = si.w_prior.bernoulli_p_nat + si.gamma_feedback.bernoulli_p_nat + si.gamma_prior.bernoulli_p_nat;
fa.gamma.p = 1 ./ (1 + exp(-fa.gamma.p_nat));
end
function [converged, conv] = report_progress_and_check_convergence(conv, iter, z, fa, op)
conv_z = mean(abs(z(:) - conv.z_old(:)));
conv_P_gamma = mean(abs(fa.gamma.p(:) - conv.P_gamma_old(:)));
if op.verbosity > 0 && mod(iter, op.verbosity) == 0
fprintf(1, '%d, conv = [%.2e %.2e], damp = %.2e\n', iter, conv_z, conv_P_gamma, op.damp);
end
%converged = conv_z < op.threshold && conv_P_gamma < op.threshold;
converged = conv_P_gamma < op.threshold;
conv.z_old = z;
conv.P_gamma_old = fa.gamma.p;
end