Firstly you need to install protobuf (version>3.0)
# MacOS
brew install protobuf
Look up the official document of installation for other platforms.
cd MNN/tools/converter
./generate_schema.sh
mkdir build
cd build && cmake .. && make -j4
# or execute the shell script directly
./build_tool.sh
Usage:
MNNConvert [OPTION...]
-h, --help Convert Other Model Format To MNN Model
-v, --version show current version
-f, --framework arg model type, ex: [TF,CAFFE,ONNX,TFLITE,MNN]
--modelFile arg tensorflow Pb or caffeModel, ex: *.pb,*caffemodel
--prototxt arg only used for caffe, ex: *.prototxt
--MNNModel arg MNN model, ex: *.mnn
--benchmarkModel Do NOT save big size data, such as Conv's weight,BN's
gamma,beta,mean and variance etc. Only used to test
the cost of the model
--bizCode arg MNN Model Flag, ex: MNN
--debug Enable debugging mode.
Note: Option benchmarkModel has removed some parameters from the model, such as weight of convolution、mean、var of BN,to reduce the size of converted model,and initialize params randomly in runtime,it will be helpful in performance testing.
./MNNConvert -f TF/ONNX/TFLITE --modelFile XXX.pb/XXX.onnx/XXX.tflite --MNNModel XXX.XX --bizCode XXX
These three options are necessary! For example:
./MNNConvert -f TF --modelFile path/to/mobilenetv1.pb --MNNModel model.mnn --bizCode MNN
./MNNConvert -f CAFFE --modelFile XXX.caffemodel --prototxt XXX.prototxt --MNNModel XXX.XX --bizCode XXX
These four options are necessary! For example:
./MNNConvert -f CAFFE --modelFile path/to/mobilenetv1.caffemodel --prototxt path/to/mobilenetv1.prototxt --MNNModel model.mnn --bizCode MNN
./MNNConvert -f MNN --modelFile XXX.mnn --MNNModel XXX.XX --bizCode XXX
./MNNConvert --version
Dump MNN binary model file to readable format like json, it will be helpful when compared to original model parameters.
- Turn pytorch model to Onnx (https://pytorch.org/docs/stable/onnx.html)
import torch
import torchvision
dummy_input = torch.randn(10, 3, 224, 224, device='cuda')
model = torchvision.models.alexnet(pretrained=True).cuda()
# Providing input and output names sets the display names for values
# within the model's graph. Setting these does not change the semantics
# of the graph; it is only for readability.
#
# The inputs to the network consist of the flat list of inputs (i.e.
# the values you would pass to the forward() method) followed by the
# flat list of parameters. You can partially specify names, i.e. provide
# a list here shorter than the number of inputs to the model, and we will
# only set that subset of names, starting from the beginning.
input_names = [ "actual_input_1" ] + [ "learned_%d" % i for i in range(16) ]
output_names = [ "output1" ]
torch.onnx.export(model, dummy_input, "alexnet.onnx", verbose=True, input_names=input_names, output_names=output_names)
- Turn Onnx to MNN
./MNNConvert -f ONNX --modelFile alexnet.onnx --MNNModel alexnet.mnn --bizCode MNN