Simple feedforward neural network trained by SGD, backpropagation and mean square error.
- Róbert Kolcún @NoName115 487564@mail.muni.cz
- Ondrej Kurák @H00N24 487589@mail.muni.cz
$ ./RUN
trainPredictions
- predicted labels for train vectors (train + eval)actualTestPredictions
- predicted labels fot test vectors
src/Makefile
- Enables debug prints
$ make debug
$ ./network
==Start==
==Training data loading: Start==
File opened: ../MNIST_DATA/mnist_train_vectors.csv
File opened: ../MNIST_DATA/mnist_train_labels.csv
==Training data loading: End (1.00s)==
==Network initialization: Start==
==Network initialization: End (0.02s)==
==Training: Start==
2 epochs, 0.200 training rate, 32 batch size
Training data shape: (48000, 785)
Training labels shape: (48000, 10)
Eval data shape: (12000, 785)
Eval labels shape: (12000, 10)
Epoch 1: 100%
Time: 76.25s
Eval accuracy: 94.17%
Epoch 2: 100%
Time: 76.17s
Eval accuracy: 95.88%
==Training: End==
==Predicting training data: Start ==
Test data accuracy 96.48%
==Predicting training data: End (37.96s)==
==Predicting testing data: Start ==
File opened: ../MNIST_DATA/mnist_test_vectors.csv
File opened: ../MNIST_DATA/mnist_test_labels.csv
Test data accuracy 96.20%
==Predicting testing data: End (6.51s)==
==Total time 212.80s==
- Compiles and runs unit tests
- CuTest website
- Licence can be found in src/tests/license.txt file
$ make test
./test
............
OK (12 tests)
- profiling using
gprof
$ make profile
$ ./network
$ gprof ./network