-
Notifications
You must be signed in to change notification settings - Fork 6.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
- Loading branch information
Showing
3 changed files
with
253 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,203 @@ | ||
#!/usr/bin/env python | ||
|
||
# Copyright 2017 Google Inc. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
"""This application demonstrates face detection, face emotions | ||
and speech transcription using the Google Cloud API. | ||
Usage Examples: | ||
python beta_snippets.py boxes \ | ||
gs://python-docs-samples-tests/video/googlework_short.mp4 | ||
python beta_snippets.py \ | ||
emotions gs://python-docs-samples-tests/video/googlework_short.mp4 | ||
python beta_snippets.py \ | ||
transcription gs://python-docs-samples-tests/video/googlework_short.mp4 | ||
""" | ||
|
||
import argparse | ||
|
||
from google.cloud import videointelligence_v1p1beta1 as videointelligence | ||
|
||
|
||
# [START video_face_bounding_boxes] | ||
def face_bounding_boxes(gcs_uri): | ||
""" Detects faces' bounding boxes. """ | ||
video_client = videointelligence.VideoIntelligenceServiceClient() | ||
features = [videointelligence.enums.Feature.FACE_DETECTION] | ||
|
||
config = videointelligence.types.FaceConfig( | ||
include_bounding_boxes=True) | ||
context = videointelligence.types.VideoContext( | ||
face_detection_config=config) | ||
|
||
operation = video_client.annotate_video( | ||
gcs_uri, features=features, video_context=context) | ||
print('\nProcessing video for face annotations:') | ||
|
||
result = operation.result(timeout=900) | ||
print('\nFinished processing.') | ||
|
||
# There is only one result because a single video was processed. | ||
faces = result.annotation_results[0].face_detection_annotations | ||
for i, face in enumerate(faces): | ||
print('Face {}'.format(i)) | ||
|
||
# Each face_detection_annotation has only one segment. | ||
segment = face.segments[0] | ||
start_time = (segment.segment.start_time_offset.seconds + | ||
segment.segment.start_time_offset.nanos / 1e9) | ||
end_time = (segment.segment.end_time_offset.seconds + | ||
segment.segment.end_time_offset.nanos / 1e9) | ||
positions = '{}s to {}s'.format(start_time, end_time) | ||
print('\tSegment: {}\n'.format(positions)) | ||
|
||
# Each detected face may appear in many frames of the video. | ||
# Here we process only the first frame. | ||
frame = face.frames[0] | ||
|
||
time_offset = (frame.time_offset.seconds + | ||
frame.time_offset.nanos / 1e9) | ||
box = frame.attributes[0].normalized_bounding_box | ||
|
||
print('First frame time offset: {}s\n'.format(time_offset)) | ||
|
||
print('First frame normalized bounding box:') | ||
print('\tleft : {}'.format(box.left)) | ||
print('\ttop : {}'.format(box.top)) | ||
print('\tright : {}'.format(box.right)) | ||
print('\tbottom: {}'.format(box.bottom)) | ||
print('\n') | ||
# [END video_face_bounding_boxes] | ||
|
||
|
||
# [START video_face_emotions] | ||
def face_emotions(gcs_uri): | ||
""" Analyze faces' emotions over frames. """ | ||
video_client = videointelligence.VideoIntelligenceServiceClient() | ||
features = [videointelligence.enums.Feature.FACE_DETECTION] | ||
|
||
config = videointelligence.types.FaceConfig( | ||
include_emotions=True) | ||
context = videointelligence.types.VideoContext( | ||
face_detection_config=config) | ||
|
||
operation = video_client.annotate_video( | ||
gcs_uri, features=features, video_context=context) | ||
print('\nProcessing video for face annotations:') | ||
|
||
result = operation.result(timeout=600) | ||
print('\nFinished processing.') | ||
|
||
# There is only one result because a single video was processed. | ||
faces = result.annotation_results[0].face_detection_annotations | ||
for i, face in enumerate(faces): | ||
for j, frame in enumerate(face.frames): | ||
time_offset = (frame.time_offset.seconds + | ||
frame.time_offset.nanos / 1e9) | ||
emotions = frame.attributes[0].emotions | ||
|
||
print('Face {}, frame {}, time_offset {}\n'.format( | ||
i, j, time_offset)) | ||
|
||
# from videointelligence.enums | ||
emotion_labels = ( | ||
'EMOTION_UNSPECIFIED', 'AMUSEMENT', 'ANGER', | ||
'CONCENTRATION', 'CONTENTMENT', 'DESIRE', | ||
'DISAPPOINTMENT', 'DISGUST', 'ELATION', | ||
'EMBARRASSMENT', 'INTEREST', 'PRIDE', 'SADNESS', | ||
'SURPRISE') | ||
|
||
for emotion in emotions: | ||
emotion_index = emotion.emotion | ||
emotion_label = emotion_labels[emotion_index] | ||
emotion_score = emotion.score | ||
|
||
print('emotion: {} (confidence score: {})'.format( | ||
emotion_label, emotion_score)) | ||
|
||
print('\n') | ||
|
||
print('\n') | ||
# [END video_face_emotions] | ||
|
||
|
||
# [START video_speech_transcription] | ||
def speech_transcription(input_uri): | ||
"""Transcribe speech from a video stored on GCS.""" | ||
video_client = videointelligence.VideoIntelligenceServiceClient() | ||
|
||
features = [videointelligence.enums.Feature.SPEECH_TRANSCRIPTION] | ||
|
||
config = videointelligence.types.SpeechTranscriptionConfig( | ||
language_code='en-US') | ||
video_context = videointelligence.types.VideoContext( | ||
speech_transcription_config=config) | ||
|
||
operation = video_client.annotate_video( | ||
input_uri, features=features, | ||
video_context=video_context) | ||
|
||
print('\nProcessing video for speech transcription.') | ||
|
||
result = operation.result(timeout=180) | ||
|
||
# There is only one annotation_result since only | ||
# one video is processed. | ||
annotation_results = result.annotation_results[0] | ||
speech_transcription = annotation_results.speech_transcriptions[0] | ||
alternative = speech_transcription.alternatives[0] | ||
|
||
print('Transcript: {}'.format(alternative.transcript)) | ||
print('Confidence: {}\n'.format(alternative.confidence)) | ||
|
||
print('Word level information:') | ||
for word_info in alternative.words: | ||
word = word_info.word | ||
start_time = word_info.start_time | ||
end_time = word_info.end_time | ||
print('\t{}s - {}s: {}'.format( | ||
start_time.seconds + start_time.nanos * 1e-9, | ||
end_time.seconds + end_time.nanos * 1e-9, | ||
word)) | ||
# [END video_speech_transcription] | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser( | ||
description=__doc__, | ||
formatter_class=argparse.RawDescriptionHelpFormatter) | ||
subparsers = parser.add_subparsers(dest='command') | ||
analyze_faces_parser = subparsers.add_parser( | ||
'boxes', help=face_bounding_boxes.__doc__) | ||
analyze_faces_parser.add_argument('gcs_uri') | ||
|
||
analyze_emotions_parser = subparsers.add_parser( | ||
'emotions', help=face_emotions.__doc__) | ||
analyze_emotions_parser.add_argument('gcs_uri') | ||
|
||
speech_transcription_parser = subparsers.add_parser( | ||
'transcription', help=speech_transcription.__doc__) | ||
speech_transcription_parser.add_argument('gcs_uri') | ||
|
||
args = parser.parse_args() | ||
|
||
if args.command == 'boxes': | ||
face_bounding_boxes(args.gcs_uri) | ||
elif args.command == 'emotions': | ||
face_emotions(args.gcs_uri) | ||
elif args.command == 'transcription': | ||
speech_transcription(args.gcs_uri) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,49 @@ | ||
#!/usr/bin/env python | ||
|
||
# Copyright 2017 Google, Inc | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
|
||
import pytest | ||
|
||
import beta_snippets | ||
|
||
|
||
BUCKET = os.environ['CLOUD_STORAGE_BUCKET'] | ||
FACES_SHORT_FILE_PATH = 'video/googlework_short.mp4' | ||
|
||
|
||
@pytest.mark.slow | ||
def test_face_bounding_boxes(capsys): | ||
beta_snippets.face_bounding_boxes( | ||
'gs://{}/{}'.format(BUCKET, FACES_SHORT_FILE_PATH)) | ||
out, _ = capsys.readouterr() | ||
assert 'top :' in out | ||
|
||
|
||
@pytest.mark.slow | ||
def test_face_emotions(capsys): | ||
beta_snippets.face_emotions( | ||
'gs://{}/{}'.format(BUCKET, FACES_SHORT_FILE_PATH)) | ||
out, _ = capsys.readouterr() | ||
assert 'CONCENTRATION' in out | ||
|
||
|
||
@pytest.mark.slow | ||
def test_speech_transcription(capsys): | ||
beta_snippets.speech_transcription( | ||
'gs://{}/{}'.format(BUCKET, FACES_SHORT_FILE_PATH)) | ||
out, _ = capsys.readouterr() | ||
assert 'cultural' in out |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1 +1 @@ | ||
google-cloud-videointelligence==1.0.1 | ||
google-cloud-videointelligence==1.1.0 |