-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
get_model_evaluation.py
87 lines (77 loc) · 3.61 KB
/
get_model_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
def get_model_evaluation(project_id, model_id, model_evaluation_id):
"""Get model evaluation."""
# [START automl_language_entity_extraction_get_model_evaluation]
# [START automl_language_sentiment_analysis_get_model_evaluation]
# [START automl_language_text_classification_get_model_evaluation]
# [START automl_translate_get_model_evaluation]
# [START automl_vision_classification_get_model_evaluation]
# [START automl_vision_object_detection_get_model_evaluation]
from google.cloud import automl
# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"
# model_evaluation_id = "YOUR_MODEL_EVALUATION_ID"
client = automl.AutoMlClient()
# Get the full path of the model evaluation.
model_path = client.model_path(project_id, "us-central1", model_id)
model_evaluation_full_id = f"{model_path}/modelEvaluations/{model_evaluation_id}"
# Get complete detail of the model evaluation.
response = client.get_model_evaluation(name=model_evaluation_full_id)
print("Model evaluation name: {}".format(response.name))
print("Model annotation spec id: {}".format(response.annotation_spec_id))
print("Create Time: {}".format(response.create_time))
print("Evaluation example count: {}".format(response.evaluated_example_count))
# [END automl_language_sentiment_analysis_get_model_evaluation]
# [END automl_language_text_classification_get_model_evaluation]
# [END automl_translate_get_model_evaluation]
# [END automl_vision_classification_get_model_evaluation]
# [END automl_vision_object_detection_get_model_evaluation]
print(
"Entity extraction model evaluation metrics: {}".format(
response.text_extraction_evaluation_metrics
)
)
# [END automl_language_entity_extraction_get_model_evaluation]
# [START automl_language_sentiment_analysis_get_model_evaluation]
print(
"Sentiment analysis model evaluation metrics: {}".format(
response.text_sentiment_evaluation_metrics
)
)
# [END automl_language_sentiment_analysis_get_model_evaluation]
# [START automl_language_text_classification_get_model_evaluation]
# [START automl_vision_classification_get_model_evaluation]
print(
"Classification model evaluation metrics: {}".format(
response.classification_evaluation_metrics
)
)
# [END automl_language_text_classification_get_model_evaluation]
# [END automl_vision_classification_get_model_evaluation]
# [START automl_translate_get_model_evaluation]
print(
"Translation model evaluation metrics: {}".format(
response.translation_evaluation_metrics
)
)
# [END automl_translate_get_model_evaluation]
# [START automl_vision_object_detection_get_model_evaluation]
print(
"Object detection model evaluation metrics: {}".format(
response.image_object_detection_evaluation_metrics
)
)
# [END automl_vision_object_detection_get_model_evaluation]