-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
Copy pathquickstart.py
62 lines (50 loc) · 2.32 KB
/
quickstart.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
#!/usr/bin/env python
# Copyright 2017 Google Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This application demonstrates label detection on a demo video using
the Google Cloud API.
Usage:
python quickstart.py
"""
def run_quickstart():
# [START video_quickstart]
from google.cloud import videointelligence
video_client = videointelligence.VideoIntelligenceServiceClient()
features = [videointelligence.enums.Feature.LABEL_DETECTION]
operation = video_client.annotate_video(
'gs://cloud-samples-data/video/cat.mp4', features=features)
print('\nProcessing video for label annotations:')
result = operation.result(timeout=120)
print('\nFinished processing.')
# first result is retrieved because a single video was processed
segment_labels = result.annotation_results[0].segment_label_annotations
for i, segment_label in enumerate(segment_labels):
print('Video label description: {}'.format(
segment_label.entity.description))
for category_entity in segment_label.category_entities:
print('\tLabel category description: {}'.format(
category_entity.description))
for i, segment in enumerate(segment_label.segments):
start_time = (segment.segment.start_time_offset.seconds +
segment.segment.start_time_offset.nanos / 1e9)
end_time = (segment.segment.end_time_offset.seconds +
segment.segment.end_time_offset.nanos / 1e9)
positions = '{}s to {}s'.format(start_time, end_time)
confidence = segment.confidence
print('\tSegment {}: {}'.format(i, positions))
print('\tConfidence: {}'.format(confidence))
print('\n')
# [END video_quickstart]
if __name__ == '__main__':
run_quickstart()