-
Notifications
You must be signed in to change notification settings - Fork 6.4k
/
adaptation_v2_inline_custom_class.py
75 lines (58 loc) · 2.36 KB
/
adaptation_v2_inline_custom_class.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START speech_adaptation_v2_inline_custom_class]
import io
from google.cloud.speech_v2 import SpeechClient
from google.cloud.speech_v2.types import cloud_speech
def adaptation_v2_inline_custom_class(project_id, recognizer_id, audio_file):
# Instantiates a client
client = SpeechClient()
request = cloud_speech.CreateRecognizerRequest(
parent=f"projects/{project_id}/locations/global",
recognizer_id=recognizer_id,
recognizer=cloud_speech.Recognizer(
language_codes=["en-US"], model="latest_short"
),
)
# Creates a Recognizer
operation = client.create_recognizer(request=request)
recognizer = operation.result()
# Reads a file as bytes
with io.open(audio_file, "rb") as f:
content = f.read()
# Build inline phrase set to produce a more accurate transcript
phrase_set = cloud_speech.PhraseSet(phrases=[{"value": "${fare}", "boost": 20}])
custom_class = cloud_speech.CustomClass(name="fare", items=[{"value": "fare"}])
adaptation = cloud_speech.SpeechAdaptation(
phrase_sets=[
cloud_speech.SpeechAdaptation.AdaptationPhraseSet(
inline_phrase_set=phrase_set
)
],
custom_classes=[custom_class],
)
config = cloud_speech.RecognitionConfig(
auto_decoding_config={}, adaptation=adaptation
)
request = cloud_speech.RecognizeRequest(
recognizer=recognizer.name, config=config, content=content
)
# Transcribes the audio into text
response = client.recognize(request=request)
for result in response.results:
print("Transcript: {}".format(result.alternatives[0].transcript))
return response
# [END speech_adaptation_v2_inline_custom_class]
if __name__ == "__main__":
adaptation_v2_inline_custom_class()