-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
Copy pathsamples_test.py
269 lines (220 loc) · 8.49 KB
/
samples_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# Copyright 2018 Google Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import time
import pytest
@pytest.fixture
def temp_dataset():
from google.cloud import bigquery
client = bigquery.Client()
dataset_id = f"temp_dataset_{int(time.time() * 1000)}"
dataset_ref = bigquery.DatasetReference(client.project, dataset_id)
dataset = client.create_dataset(bigquery.Dataset(dataset_ref))
yield dataset
client.delete_dataset(dataset, delete_contents=True)
def test_client_library_query():
# [START bigquery_migration_client_library_query]
from google.cloud import bigquery
client = bigquery.Client()
sql = """
SELECT name
FROM `bigquery-public-data.usa_names.usa_1910_current`
WHERE state = 'TX'
LIMIT 100
"""
# Run a Standard SQL query using the environment's default project
df = client.query(sql).to_dataframe()
# Run a Standard SQL query with the project set explicitly
project_id = "your-project-id"
# [END bigquery_migration_client_library_query]
assert len(df) > 0
project_id = os.environ["GOOGLE_CLOUD_PROJECT"]
# [START bigquery_migration_client_library_query]
df = client.query(sql, project=project_id).to_dataframe()
# [END bigquery_migration_client_library_query]
assert len(df) > 0
def test_pandas_gbq_query():
# [START bigquery_migration_pandas_gbq_query]
import pandas
sql = """
SELECT name
FROM `bigquery-public-data.usa_names.usa_1910_current`
WHERE state = 'TX'
LIMIT 100
"""
# Run a Standard SQL query using the environment's default project
df = pandas.read_gbq(sql, dialect="standard")
# Run a Standard SQL query with the project set explicitly
project_id = "your-project-id"
# [END bigquery_migration_pandas_gbq_query]
assert len(df) > 0
project_id = os.environ["GOOGLE_CLOUD_PROJECT"]
# [START bigquery_migration_pandas_gbq_query]
df = pandas.read_gbq(sql, project_id=project_id, dialect="standard")
# [END bigquery_migration_pandas_gbq_query]
assert len(df) > 0
def test_client_library_query_bqstorage():
# [START bigquery_migration_client_library_query_bqstorage]
from google.cloud import bigquery
client = bigquery.Client()
sql = "SELECT * FROM `bigquery-public-data.irs_990.irs_990_2012`"
# The client library uses the BigQuery Storage API to download results to a
# pandas dataframe if the API is enabled on the project, the
# `google-cloud-bigquery-storage` package is installed, and the `pyarrow`
# package is installed.
df = client.query(sql).to_dataframe()
# [END bigquery_migration_client_library_query_bqstorage]
assert len(df) > 0
def test_pandas_gbq_query_bqstorage():
# [START bigquery_migration_pandas_gbq_query_bqstorage]
import pandas
sql = "SELECT * FROM `bigquery-public-data.irs_990.irs_990_2012`"
# Use the BigQuery Storage API to download results more quickly.
df = pandas.read_gbq(sql, dialect="standard", use_bqstorage_api=True)
# [END bigquery_migration_pandas_gbq_query_bqstorage]
assert len(df) > 0
def test_client_library_legacy_query():
# [START bigquery_migration_client_library_query_legacy]
from google.cloud import bigquery
client = bigquery.Client()
sql = """
SELECT name
FROM [bigquery-public-data:usa_names.usa_1910_current]
WHERE state = 'TX'
LIMIT 100
"""
query_config = bigquery.QueryJobConfig(use_legacy_sql=True)
df = client.query(sql, job_config=query_config).to_dataframe()
# [END bigquery_migration_client_library_query_legacy]
assert len(df) > 0
def test_pandas_gbq_legacy_query():
# [START bigquery_migration_pandas_gbq_query_legacy]
import pandas
sql = """
SELECT name
FROM [bigquery-public-data:usa_names.usa_1910_current]
WHERE state = 'TX'
LIMIT 100
"""
df = pandas.read_gbq(sql, dialect="legacy")
# [END bigquery_migration_pandas_gbq_query_legacy]
assert len(df) > 0
def test_client_library_query_with_parameters():
# [START bigquery_migration_client_library_query_parameters]
from google.cloud import bigquery
client = bigquery.Client()
sql = """
SELECT name
FROM `bigquery-public-data.usa_names.usa_1910_current`
WHERE state = @state
LIMIT @limit
"""
query_config = bigquery.QueryJobConfig(
query_parameters=[
bigquery.ScalarQueryParameter("state", "STRING", "TX"),
bigquery.ScalarQueryParameter("limit", "INTEGER", 100),
]
)
df = client.query(sql, job_config=query_config).to_dataframe()
# [END bigquery_migration_client_library_query_parameters]
assert len(df) > 0
def test_pandas_gbq_query_with_parameters():
# [START bigquery_migration_pandas_gbq_query_parameters]
import pandas
sql = """
SELECT name
FROM `bigquery-public-data.usa_names.usa_1910_current`
WHERE state = @state
LIMIT @limit
"""
query_config = {
"query": {
"parameterMode": "NAMED",
"queryParameters": [
{
"name": "state",
"parameterType": {"type": "STRING"},
"parameterValue": {"value": "TX"},
},
{
"name": "limit",
"parameterType": {"type": "INTEGER"},
"parameterValue": {"value": 100},
},
],
}
}
df = pandas.read_gbq(sql, configuration=query_config)
# [END bigquery_migration_pandas_gbq_query_parameters]
assert len(df) > 0
def test_client_library_upload_from_dataframe(temp_dataset):
# [START bigquery_migration_client_library_upload_from_dataframe]
from google.cloud import bigquery
import pandas
df = pandas.DataFrame(
{
"my_string": ["a", "b", "c"],
"my_int64": [1, 2, 3],
"my_float64": [4.0, 5.0, 6.0],
"my_timestamp": [
pandas.Timestamp("1998-09-04T16:03:14"),
pandas.Timestamp("2010-09-13T12:03:45"),
pandas.Timestamp("2015-10-02T16:00:00"),
],
}
)
client = bigquery.Client()
table_id = "my_dataset.new_table"
# [END bigquery_migration_client_library_upload_from_dataframe]
table_id = temp_dataset.dataset_id + ".test_client_library_upload_from_dataframe"
# [START bigquery_migration_client_library_upload_from_dataframe]
# Since string columns use the "object" dtype, pass in a (partial) schema
# to ensure the correct BigQuery data type.
job_config = bigquery.LoadJobConfig(
schema=[
bigquery.SchemaField("my_string", "STRING"),
]
)
job = client.load_table_from_dataframe(df, table_id, job_config=job_config)
# Wait for the load job to complete.
job.result()
# [END bigquery_migration_client_library_upload_from_dataframe]
client = bigquery.Client()
table = client.get_table(table_id)
assert table.num_rows == 3
def test_pandas_gbq_upload_from_dataframe(temp_dataset):
from google.cloud import bigquery
# [START bigquery_migration_pandas_gbq_upload_from_dataframe]
import pandas
df = pandas.DataFrame(
{
"my_string": ["a", "b", "c"],
"my_int64": [1, 2, 3],
"my_float64": [4.0, 5.0, 6.0],
"my_timestamp": [
pandas.Timestamp("1998-09-04T16:03:14"),
pandas.Timestamp("2010-09-13T12:03:45"),
pandas.Timestamp("2015-10-02T16:00:00"),
],
}
)
table_id = "my_dataset.new_table"
# [END bigquery_migration_pandas_gbq_upload_from_dataframe]
table_id = temp_dataset.dataset_id + ".test_pandas_gbq_upload_from_dataframe"
# [START bigquery_migration_pandas_gbq_upload_from_dataframe]
df.to_gbq(table_id)
# [END bigquery_migration_pandas_gbq_upload_from_dataframe]
client = bigquery.Client()
table = client.get_table(table_id)
assert table.num_rows == 3