-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
Copy pathtranscribe_context_classes.py
58 lines (47 loc) · 2.15 KB
/
transcribe_context_classes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# Copyright 2020 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START speech_context_classes]
from google.cloud import speech
def transcribe_context_classes(storage_uri: str) -> speech.RecognizeResponse:
"""Provides "hints" to the speech recognizer to
favor specific classes of words in the results.
Args:
storage_uri: The URI of the audio file to transcribe.
Returns:
The transcript of the audio file.
"""
client = speech.SpeechClient()
# storage_uri = 'gs://YOUR_BUCKET_ID/path/to/your/file.wav'
audio = speech.RecognitionAudio(uri=storage_uri)
# SpeechContext: to configure your speech_context see:
# https://cloud.google.com/speech-to-text/docs/reference/rpc/google.cloud.speech.v1#speechcontext
# Full list of supported phrases (class tokens) here:
# https://cloud.google.com/speech-to-text/docs/class-tokens
speech_context = speech.SpeechContext(phrases=["$TIME"])
# RecognitionConfig: to configure your encoding and sample_rate_hertz, see:
# https://cloud.google.com/speech-to-text/docs/reference/rpc/google.cloud.speech.v1#recognitionconfig
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=8000,
language_code="en-US",
speech_contexts=[speech_context],
)
response = client.recognize(config=config, audio=audio)
for i, result in enumerate(response.results):
alternative = result.alternatives[0]
print("-" * 20)
print(f"First alternative of result {i}")
print(f"Transcript: {alternative.transcript}")
return response
# [END speech_context_classes]