-
Notifications
You must be signed in to change notification settings - Fork 24
/
0_ACS_download.R
executable file
·83 lines (68 loc) · 2.58 KB
/
0_ACS_download.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
###################################################
### This script downloads the ACS median income data at the blockgroup level
### For each county in the US, it saves a file holding the income data for that county.
###################################################
###---###
library(acs)
### Get in your own key here: https://api.census.gov/data/key_signup.html
keyString = "your key here"
if(keyString == "your key here"){print("update key"); break}
api.key.install(key=keyString)
acs.tables.install()
###---###
library(maps)
library(acs)
library(parallel)
library(foreach)
library(doParallel)
library(here)
rm(list=ls())
## Import config.R to set filepaths
mosaiks_code <- Sys.getenv("MOSAIKS_CODE")
if (mosaiks_code=="") {
mosaiks_code = here("code")
}
source(file.path(mosaiks_code,"mosaiks","config.R"))
## Source the necessary helper files
source(file.path(utils_dir, "R_utils.R"))
# Set the number of cores:
no_cores = 20
### We can do this to get all the block groups within a single county.
statefips = unique(state.fips$fips)
#take only the last three parts of the county fips
tmp = county.fips
tmp = tmp$fips
tmp = as.character(tmp)
countyfips = as.numeric(substr(x = tmp, start = (nchar(tmp) - 2), stop = nchar(tmp)))
#make the state fips as the first part of the county fips
statefips = tmp
statefips[nchar(tmp)==4] = substr(x = statefips[nchar(tmp)==4], start = 1, stop = 1)
statefips[nchar(tmp)==5] = substr(x = statefips[nchar(tmp)==5], start = 1, stop = 2)
statefips = as.numeric(statefips)
state = 06
county = 019
tableNumber = "B19013"
endYear = 2015
### Now I'm going to download and save a file for each county to a single folder:
### Then I can load that folder later.
cl = makeCluster(no_cores)
registerDoParallel(cl)
numbers = foreach (i = 1:length(countyfips), .combine = 'c',
.export = c(),
.packages=c("acs") ) %dopar% {
print(i)
print("for county:")
print(paste(statefips[i],countyfips[i]))
blockGroupForCounty = acs.fetch(geography = geo.make(state = statefips[i], county = countyfips[i], tract = "*", block.group = "*"), table.number = tableNumber, endyear = endYear)
df = data.frame(estimate(blockGroupForCounty))
df$state = statefips[i]
df$county = countyfips[i]
df$tract = blockGroupForCounty@geography$tract
df$blockgroup = blockGroupForCounty@geography$blockgroup
fn = file.path(data_dir, "raw/applications/income/acs_blockgroup_income_by_county/",statefips[i],"_",countyfips[i],".csv")
print(fn)
write.csv2(x = df, file = fn)
print("saved")
return(i)
}
print("DONE DONE DONE")