|
| 1 | +# Realtime LLM Plugin Development |
| 2 | + |
| 3 | +Here is a minimal example of developing a new Realtime LLM. |
| 4 | + |
| 5 | +```python |
| 6 | +from vision_agents.core.llm.llm import LLM, LLMResponseEvent |
| 7 | +from vision_agents.core.llm.events import LLMResponseCompletedEvent, LLMResponseChunkEvent |
| 8 | +from vision_agents.core.processors import Processor |
| 9 | +from vision_agents.core.llm import realtime |
| 10 | + |
| 11 | +class MyRealtime(realtime.Realtime): |
| 12 | + def __init__(self, model: str, client: Optional[ClientType]): |
| 13 | + # it should be possible to pass the client (makes it easier for users to customize things) |
| 14 | + # settings that are common to change, like model should be specified as well |
| 15 | + super().__init__() |
| 16 | + self.model = model |
| 17 | + self.client = client |
| 18 | + |
| 19 | + async def connect(self): |
| 20 | + # create the websocket or webrtc connection to the realtime LLM |
| 21 | + pass |
| 22 | + |
| 23 | + async def _handle_events(self): |
| 24 | + # handle the events from the connect method |
| 25 | + |
| 26 | + # when receiving audio do this |
| 27 | + audio_event = RealtimeAudioOutputEvent( |
| 28 | + plugin_name="gemini", |
| 29 | + audio_data=audio_content, |
| 30 | + sample_rate=24000 |
| 31 | + ) |
| 32 | + self.events.send(audio_event) |
| 33 | + |
| 34 | + await self.output_track.write(audio_content) |
| 35 | + |
| 36 | + # for transcriptions... |
| 37 | + # TODO document this |
| 38 | + pass |
| 39 | + |
| 40 | + async def _close_impl(self): |
| 41 | + pass |
| 42 | + |
| 43 | + # native method wrapped. wrap the native method, every llm has its own name for this |
| 44 | + # openai calls it create response, anthropic create message. so the name depends on your llm |
| 45 | + async def mynativemethod(self, *args, **kwargs): |
| 46 | + |
| 47 | + # some details to get right here... |
| 48 | + # ensure conversation history is maintained. typically by passing it ie: |
| 49 | + enhanced_instructions = self._build_enhanced_instructions() |
| 50 | + if enhanced_instructions: |
| 51 | + kwargs["system"] = [{"text": enhanced_instructions}] |
| 52 | + |
| 53 | + response_iterator = await self.client.mynativemethod(self, *args, **kwargs) |
| 54 | + |
| 55 | + # while receiving streaming do this |
| 56 | + total_text = "" |
| 57 | + for chunk in response_iterator: |
| 58 | + self.events.send(LLMResponseChunkEvent( |
| 59 | + plugin_name="gemini", |
| 60 | + content_index=0, |
| 61 | + item_id="", |
| 62 | + output_index=0, |
| 63 | + sequence_number=0, |
| 64 | + delta=chunk.text, |
| 65 | + )) |
| 66 | + total_text += chunk.text |
| 67 | + |
| 68 | + llm_response = LLMResponseEvent(response_iterator, total_text) |
| 69 | + # and when completed |
| 70 | + self.events.send(LLMResponseCompletedEvent( |
| 71 | + plugin_name="gemini", |
| 72 | + original=llm_response.original, |
| 73 | + text=llm_response.text |
| 74 | + )) |
| 75 | + |
| 76 | + async def simple_response( |
| 77 | + self, |
| 78 | + text: str, |
| 79 | + processors: Optional[List[Processor]] = None, |
| 80 | + participant: Participant = None, |
| 81 | + ): |
| 82 | + # call the LLM with the given text |
| 83 | + # be sure to use the streaming version |
| 84 | + self.mynativemethod(...) |
| 85 | + |
| 86 | + async def simple_audio_response(self, pcm: PcmData): |
| 87 | + # respond to this audio |
| 88 | + pass |
| 89 | + |
| 90 | +``` |
| 91 | + |
| 92 | +## Things to get right |
| 93 | + |
| 94 | +* Use the streaming API/version in your native method |
| 95 | +* Have 1 endpoint wrap the native method (with *args, **kwargs) |
| 96 | +* Simple response is the standardized way. this should call mynativemethod |
| 97 | +* Messages are standardized in _normalize_message |
| 98 | + |
| 99 | +## Other examples |
| 100 | + |
| 101 | +If you need more examples look in |
| 102 | + |
| 103 | +- gemini_llm.py |
| 104 | +- bedrock_llm.py |
0 commit comments