-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathPEMS-BAY.yaml
52 lines (48 loc) · 2.11 KB
/
PEMS-BAY.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
# start up
start_up:
# =================== running mode (select one of the three) ================== #
mode: scratch # three mode: test, resume, scratch
resume_epoch: 0 # default to zero, if use the 'resume' mode, users need to set the epoch to resume.
model_name: D2STGNN # model name
device: cuda:0
load_pkl: False # load serialized dataloader
# Data Processing
data_args:
data_dir: datasets/PEMS-BAY # data path
adj_data_path: datasets/sensor_graph/adj_mx_bay.pkl # adj data path
adj_type: doubletransition # adj type to preprocessing
# Model Args
model_args:
batch_size: 32
num_feat: 1
num_hidden: 32
node_hidden: 12
time_emb_dim: 12
dropout: 0.1
seq_length: 12
k_t: 3
k_s: 2
gap: 3
num_modalities: 2
# Optimization Args
optim_args:
# adam optimizer
lrate: 0.002 # learning rate
print_model: False
wdecay: 1.0e-5 # weight decay of adam
eps: 1.0e-8 # eps of adam
# learning rate scheduler
lr_schedule: True # if use learning rate scheduler
lr_sche_steps: [1, 30, 38, 46, 54, 62, 70, 80] # steps where decay the learning rate
lr_decay_ratio: 0.5 # learning rate decay rate
# curriculum learning
if_cl: True # if use curriculum learning
cl_epochs: 3 # epochs of curriculum learning when to forecasting next time step
output_seq_len: 12
# warm up
warm_epochs: 30 # epochs of warmming up
# procedure
epochs: 80 # total epoch numbers
patience: 100 # patience for earlystopping
seq_length: 12 # input & output seq length