-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
executable file
·167 lines (138 loc) · 6.65 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import argparse
import json
import numpy as np
import os
from pathlib import Path
import torch.backends.cudnn as cudnn
import torch.utils.data
from torch.utils.tensorboard import SummaryWriter
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import utils.misc as misc
from utils.misc import NativeScalerWithGradNormCount as NativeScaler
import swin_mae
from utils.engine_pretrain import train_one_epoch
from data import ImageDataset
from glob import glob
from torch.utils.data import DataLoader, Dataset
def get_args_parser():
parser = argparse.ArgumentParser('MAE pre-training', add_help=False)
# common parameters
parser.add_argument('--batch_size', default=64, type=int)
parser.add_argument('--epochs', default=200, type=int)
parser.add_argument('--save_freq', default=10, type=int)
parser.add_argument('--checkpoint_encoder', default='', type=str)
parser.add_argument('--checkpoint_decoder', default='', type=str)
parser.add_argument('--data_path', default=r'/home/cv/anomaly_detection/full_data/weed_detection/normal_samples', type=str) # fill in the dataset path here
parser.add_argument('--mask_ratio', default=0.75, type=float,
help='Masking ratio (percentage of removed patches).')
# model parameters
parser.add_argument('--model', default='swin_mae', type=str, metavar='MODEL',
help='Name of model to train')
parser.add_argument('--input_size', default=224, type=int,
help='images input size')
parser.add_argument('--norm_pix_loss', action='store_true',
help='Use (per-patch) normalized pixels as targets for computing loss')
parser.set_defaults(norm_pix_loss=False)
# optimizer parameters
parser.add_argument('--accum_iter', default=1, type=int)
parser.add_argument('--weight_decay', type=float, default=0.05,
help='weight decay (default: 0.05)')
parser.add_argument('--lr', type=float, default=1e-3, metavar='LR',
help='learning rate (absolute lr)')
parser.add_argument('--min_lr', type=float, default=0., metavar='LR',
help='lower lr bound for cyclic schedulers that hit 0')
parser.add_argument('--warmup_epochs', type=int, default=10, metavar='N',
help='epochs to warmup LR')
# other parameters
parser.add_argument('--output_dir', default='./output_pk',
help='path where to save, empty for no saving')
parser.add_argument('--log_dir', default='./output_indices',
help='path where to tensorboard log')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=0, type=int)
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
parser.add_argument('--num_workers', default=4, type=int)
parser.add_argument('--pin_mem', action='store_true',
help='Pin CPU memory in DataLoader for more efficient (sometimes) transfer to GPU.')
parser.set_defaults(pin_mem=True)
return parser
def main(args):
# Fixed random seeds
seed = args.seed
torch.manual_seed(seed)
np.random.seed(seed)
# Set up training equipment
device = torch.device(args.device)
cudnn.benchmark = True
data_folder = "/home/prateekjha/anomaly_detection/full_data/Agriculture-Vision-2021/train/images/rgb_nir"
batch_size = 64
device = 'cuda' if torch.cuda.is_available() else 'cpu'
class_name='planter_skip'
with open("/home/prateekjha/anomaly_detection/full_data/label_dict_train.json") as F:
label_train_id=json.load(F)
image_list=glob("/home/prateekjha/anomaly_detection/full_data/Agriculture-Vision-2021/train/images/rgb_nir/*")
image_paths=[]
for x in image_list:
image_id=x.split("/")[-1]
if image_id not in label_train_id[class_name]:
image_paths.append(x)
#all_models=glob("/home/cv/anomaly_detection/MAE/exp_1/*")
#all_models=sorted(all_models,key=lambda x:int(x.split("/")[-1].split("_")[-1].split(".")[0]))
#image_paths=glob(f"{data_folder}/*")
#mask_paths=glob(f"{data_folder}/mask/*")
image_paths=sorted(image_list,key=lambda x:x.split("/")[-1].split(".")[0])
#mask_paths=sorted(mask_paths,key=lambda x:x.split("/")[-1].split(".")[0])
transform_train = transforms.Compose([
transforms.Resize((224,224)),
#transforms.RandomHorizontalFlip(),
transforms.ToTensor()
])
# Create the data loaders for train and test sets
data_iterator = ImageDataset(image_paths,transform_train)
data_loader = DataLoader(data_iterator, batch_size=batch_size, shuffle=False, num_workers=4)
# Log output
if args.log_dir is not None:
os.makedirs(args.log_dir, exist_ok=True)
log_writer = SummaryWriter()
else:
log_writer = None
# Set model
model = swin_mae.__dict__[args.model](norm_pix_loss=args.norm_pix_loss, mask_ratio=args.mask_ratio)
model.to(device)
model_without_ddp = model
# Set optimizer
param_groups = [p for p in model_without_ddp.parameters() if p.requires_grad]
optimizer = torch.optim.AdamW(param_groups, lr=args.lr, weight_decay=5e-2, betas=(0.9, 0.95)) # 原来是5E-2
loss_scaler = NativeScaler()
# Create model
misc.load_model(args=args, model_without_ddp=model_without_ddp)
args.epochs=100
# Start the training process
print(f"Start training for {args.epochs} epochs")
for epoch in range(args.start_epoch, args.epochs):
train_stats = train_one_epoch(
model, data_loader,
optimizer, device, epoch, loss_scaler,
log_writer=log_writer,
args=args
)
if args.output_dir and ((epoch + 1) % args.save_freq == 0 or epoch + 1 == args.epochs):
misc.save_model(
args=args, model=model, model_without_ddp=model_without_ddp, optimizer=optimizer,
loss_scaler=loss_scaler, epoch=epoch + 1)
log_stats = {**{f'train_{k}': v for k, v in train_stats.items()},
'epoch': epoch, }
if args.output_dir and misc.is_main_process():
if log_writer is not None:
log_writer.flush()
with open(os.path.join(args.output_dir, "log.txt"), mode="a", encoding="utf-8") as f:
f.write(json.dumps(log_stats) + "\n")
if __name__ == '__main__':
arg = get_args_parser()
arg = arg.parse_args()
if arg.output_dir:
Path(arg.output_dir).mkdir(parents=True, exist_ok=True)
main(arg)