forked from coqui-ai/STT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun-ci-ldc93s1_singleshotinference.sh
executable file
·39 lines (32 loc) · 1.4 KB
/
run-ci-ldc93s1_singleshotinference.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
#!/bin/sh
set -xe
ldc93s1_dir="./data/smoke_test"
ldc93s1_csv="${ldc93s1_dir}/ldc93s1.csv"
if [ ! -f "${ldc93s1_dir}/ldc93s1.csv" ]; then
echo "Downloading and preprocessing LDC93S1 example data, saving in ${ldc93s1_dir}."
python -u bin/import_ldc93s1.py ${ldc93s1_dir}
fi;
# Force only one visible device because we have a single-sample dataset
# and when trying to run on multiple devices (like GPUs), this will break
export CUDA_VISIBLE_DEVICES=0
python -m coqui_stt_training.train \
--alphabet_config_path "data/alphabet.txt" \
--show_progressbar false --early_stop false \
--train_files ${ldc93s1_csv} --train_batch_size 1 \
--dev_files ${ldc93s1_csv} --dev_batch_size 1 \
--test_files ${ldc93s1_csv} --test_batch_size 1 \
--n_hidden 100 --epochs 1 \
--max_to_keep 1 --checkpoint_dir '/tmp/ckpt' --checkpoint_secs 0 \
--learning_rate 0.001 --dropout_rate 0.05 \
--scorer_path 'data/smoke_test/pruned_lm.scorer'
python -m coqui_stt_training.training_graph_inference \
--n_hidden 100 \
--checkpoint_dir '/tmp/ckpt' \
--scorer_path 'data/smoke_test/pruned_lm.scorer' \
--one_shot_infer 'data/smoke_test/LDC93S1.wav'
python -m coqui_stt_training.training_graph_inference_flashlight \
--n_hidden 100 \
--checkpoint_dir '/tmp/ckpt' \
--scorer_path 'data/smoke_test/pruned_lm.scorer' \
--vocab_file 'data/smoke_test/vocab.pruned.txt' \
--one_shot_infer 'data/smoke_test/LDC93S1.wav'