Skip to content

Latest commit

 

History

History
287 lines (216 loc) · 8.04 KB

0674.最长连续递增序列.md

File metadata and controls

287 lines (216 loc) · 8.04 KB

参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

674. 最长连续递增序列

力扣题目链接

给定一个未经排序的整数数组,找到最长且 连续递增的子序列,并返回该序列的长度。

连续递增的子序列 可以由两个下标 l 和 r(l < r)确定,如果对于每个 l <= i < r,都有 nums[i] < nums[i + 1] ,那么子序列 [nums[l], nums[l + 1], ..., nums[r - 1], nums[r]] 就是连续递增子序列。

示例 1: 输入:nums = [1,3,5,4,7] 输出:3 解释:最长连续递增序列是 [1,3,5], 长度为3。 尽管 [1,3,5,7] 也是升序的子序列, 但它不是连续的,因为 5 和 7 在原数组里被 4 隔开。

示例 2: 输入:nums = [2,2,2,2,2] 输出:1 解释:最长连续递增序列是 [2], 长度为1。

提示:

  • 0 <= nums.length <= 10^4
  • -10^9 <= nums[i] <= 10^9

思路

本题相对于昨天的动态规划:300.最长递增子序列最大的区别在于“连续”。

本题要求的是最长连续递增序列

动态规划

动规五部曲分析如下:

  1. 确定dp数组(dp table)以及下标的含义

dp[i]:以下标i为结尾的数组的连续递增的子序列长度为dp[i]

注意这里的定义,一定是以下标i为结尾,并不是说一定以下标0为起始位置。

  1. 确定递推公式

如果 nums[i + 1] > nums[i],那么以 i+1 为结尾的数组的连续递增的子序列长度 一定等于 以i为结尾的数组的连续递增的子序列长度 + 1 。

即:dp[i + 1] = dp[i] + 1;

注意这里就体现出和动态规划:300.最长递增子序列的区别!

因为本题要求连续递增子序列,所以就必要比较nums[i + 1]与nums[i],而不用去比较nums[j]与nums[i] (j是在0到i之间遍历)。

既然不用j了,那么也不用两层for循环,本题一层for循环就行,比较nums[i + 1] 和 nums[i]。

这里大家要好好体会一下!

  1. dp数组如何初始化

以下标i为结尾的数组的连续递增的子序列长度最少也应该是1,即就是nums[i]这一个元素。

所以dp[i]应该初始1;

  1. 确定遍历顺序

从递推公式上可以看出, dp[i + 1]依赖dp[i],所以一定是从前向后遍历。

本文在确定递推公式的时候也说明了为什么本题只需要一层for循环,代码如下:

for (int i = 0; i < nums.size() - 1; i++) {
    if (nums[i + 1] > nums[i]) { // 连续记录
        dp[i + 1] = dp[i] + 1; // 递推公式
    }
}
  1. 举例推导dp数组

已输入nums = [1,3,5,4,7]为例,dp数组状态如下:

674.最长连续递增序列

注意这里要取dp[i]里的最大值,所以dp[2]才是结果!

以上分析完毕,C++代码如下:

class Solution {
public:
    int findLengthOfLCIS(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        int result = 1;
        vector<int> dp(nums.size() ,1);
        for (int i = 0; i < nums.size() - 1; i++) {
            if (nums[i + 1] > nums[i]) { // 连续记录
                dp[i + 1] = dp[i] + 1;
            }
            if (dp[i + 1] > result) result = dp[i + 1];
        }
        return result;
    }
};
  • 时间复杂度:$O(n)$
  • 空间复杂度:$O(n)$

贪心

这道题目也可以用贪心来做,也就是遇到nums[i + 1] > nums[i]的情况,count就++,否则count为1,记录count的最大值就可以了。

代码如下:

class Solution {
public:
    int findLengthOfLCIS(vector<int>& nums) {
        if (nums.size() == 0) return 0;
        int result = 1; // 连续子序列最少也是1
        int count = 1;
        for (int i = 0; i < nums.size() - 1; i++) {
            if (nums[i + 1] > nums[i]) { // 连续记录
                count++;
            } else { // 不连续,count从头开始
                count = 1;
            }
            if (count > result) result = count;
        }
        return result;
    }
};
  • 时间复杂度:$O(n)$
  • 空间复杂度:$O(1)$

总结

本题也是动规里子序列问题的经典题目,但也可以用贪心来做,大家也会发现贪心好像更简单一点,而且空间复杂度仅是$O(1)$。

在动规分析中,关键是要理解和动态规划:300.最长递增子序列的区别。

要联动起来,才能理解递增子序列怎么求,递增连续子序列又要怎么求

概括来说:不连续递增子序列的跟前0-i 个状态有关,连续递增的子序列只跟前一个状态有关

本篇我也把区别所在之处重点介绍了,关键在递推公式和遍历方法上,大家可以仔细体会一波!

其他语言版本

Java:

动态规划:

 /**
     * 1.dp[i] 代表当前下标最大连续值
     * 2.递推公式 if(nums[i+1]>nums[i]) dp[i+1] = dp[i]+1
     * 3.初始化 都为1
     * 4.遍历方向,从其那往后
     * 5.结果推导 。。。。
     * @param nums
     * @return
     */
    public static int findLengthOfLCIS(int[] nums) {
        int[] dp = new int[nums.length];
        for (int i = 0; i < dp.length; i++) {
            dp[i] = 1;
        }
        int res = 1;
        for (int i = 0; i < nums.length - 1; i++) {
            if (nums[i + 1] > nums[i]) {
                dp[i + 1] = dp[i] + 1;
            }
            res = res > dp[i + 1] ? res : dp[i + 1];
        }
        return res;
    }

贪心法:

public static int findLengthOfLCIS(int[] nums) {
    if (nums.length == 0) return 0;
    int res = 1; // 连续子序列最少也是1
    int count = 1;
    for (int i = 0; i < nums.length - 1; i++) {
        if (nums[i + 1] > nums[i]) { // 连续记录
            count++;
        } else { // 不连续,count从头开始
            count = 1;
        }
        if (count > res) res = count;
    }
    return res;
}

Python:

动态规划:

class Solution:
    def findLengthOfLCIS(self, nums: List[int]) -> int:
        if len(nums) == 0:
            return 0
        result = 1
        dp = [1] * len(nums)
        for i in range(len(nums)-1):
            if nums[i+1] > nums[i]: #连续记录
                dp[i+1] = dp[i] + 1
            result = max(result, dp[i+1])
        return result

贪心法:

class Solution:
    def findLengthOfLCIS(self, nums: List[int]) -> int:
        if len(nums) == 0:
            return 0
        result = 1 #连续子序列最少也是1
        count = 1
        for i in range(len(nums)-1):
            if nums[i+1] > nums[i]: #连续记录
                count += 1
            else: #不连续,count从头开始
                count = 1
            result = max(result, count)
        return result

Go:

Javascript:

动态规划:

const findLengthOfLCIS = (nums) => {
    let dp = Array(nums.length).fill(1);


    for(let i = 0; i < nums.length - 1; i++) {
        if(nums[i+1] > nums[i]) {
            dp[i+1] = dp[i]+ 1;
        }
    }

    return Math.max(...dp);
};

贪心法:

const findLengthOfLCIS = (nums) => {
    if(nums.length === 1) {
        return 1;
    }

    let maxLen = 1;
    let curMax = 1;
    let cur = nums[0];

    for(let num of nums) {
        if(num > cur) {
            curMax += 1;
            maxLen =  Math.max(maxLen, curMax);
        } else {
            curMax = 1;
        }
        cur = num;
    }

    return maxLen;
};