Self-driving cars is a hot topic today. Recent developments in machine learning, particularly the emergence of neural networks, accompanied by the increase in computational power and efficiency of modern computers has led to the development of new technology areas like self-driving car.
Autonomous cars use a variety of techniques to detect their surroundings, such as radar, laser light, GPS, odometry and computer vision. Advanced control systems interpret sensory information to identify appropriate navigation paths, as well as obstacles and relevant signage. Autonomous cars must have control systems that are capable of analyzing sensory data to distinguish between different cars on the road.
The potential benefits of autonomous cars include reduced mobility and infrastructure costs, increased safety, increased mobility, increased customer satisfaction and reduced crime. Specifically, a significant reduction in traffic collisions; the resulting injuries; and related costs, including less need for insurance. Autonomous cars are predicted to increase traffic flow; provided enhanced mobility for children, the elderly, disabled and the poor; relieve travelers from driving and navigation chores; lower fuel consumption; significantly reduce needs for parking space; reduce crime; and facilitate business models for transportation as a service, especially via the sharing economy.
Among the main obstacles to widespread adoption are technological challenges, disputes concerning liability; the time period needed to replace the existing stock of vehicles; resistance by individuals to forfeit control; consumer safety concerns; implementation of a workable legal framework and establishment of government regulations; risk of loss of privacy and security concerns, such as hackers or terrorism; concerns about the resulting loss of driving-related jobs in the road transport industry; and risk of increased suburbanization as travel becomes less costly and time-consuming. Many of these issues are due to the fact that autonomous objects, for the first time, allow computers to roam freely, with many related safety and security concerns.
Our project was squarely aimed at developing a simple RC self-driving car. This involved developing code for a cloud-based machine learning solution, an Android application for data collection and an embedded system to actuate the car's motors. This project, thus, represents a complete self-driving car solution, instead of forming a part of a complete system.
The entire concept of self-driving cars is alien to the general Indian population. Not much research is being done in India right now on this. This car represents a small, albeit significant, step towards the development of a full-sized, fully-functional self-driving car. Ours is a scalable solution, i.e. with minor modifications, it can be scaled up to a full network of self-driving cars. Communication between such a network is a future research topic that can be looked into.