-
Notifications
You must be signed in to change notification settings - Fork 78
/
MaskedOcclusionCulling.cpp
456 lines (392 loc) · 22.5 KB
/
MaskedOcclusionCulling.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
////////////////////////////////////////////////////////////////////////////////
// Copyright 2017 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
////////////////////////////////////////////////////////////////////////////////
#include <vector>
#include <string.h>
#include <assert.h>
#include <float.h>
#include "MaskedOcclusionCulling.h"
#include "CompilerSpecific.inl"
#if MOC_RECORDER_ENABLE
#include "FrameRecorder.h"
#endif
#if defined(__AVX__) || defined(__AVX2__)
// For performance reasons, the MaskedOcclusionCullingAVX2/512.cpp files should be compiled with VEX encoding for SSE instructions (to avoid
// AVX-SSE transition penalties, see https://software.intel.com/en-us/articles/avoiding-avx-sse-transition-penalties). However, this file
// _must_ be compiled without VEX encoding to allow backwards compatibility. Best practice is to use lowest supported target platform
// (/arch:SSE2) as project default, and elevate only the MaskedOcclusionCullingAVX2/512.cpp files.
#error The MaskedOcclusionCulling.cpp should be compiled with lowest supported target platform, e.g. /arch:SSE2
#endif
static MaskedOcclusionCulling::Implementation DetectCPUFeatures(MaskedOcclusionCulling::pfnAlignedAlloc alignedAlloc, MaskedOcclusionCulling::pfnAlignedFree alignedFree)
{
struct CpuInfo { int regs[4]; };
// Get regular CPUID values
int regs[4];
__cpuidex(regs, 0, 0);
// MOCVectorAllocator<CpuInfo> mocalloc( alignedAlloc, alignedFree );
// std::vector<CpuInfo, MOCVectorAllocator<CpuInfo>> cpuId( mocalloc ), cpuIdEx( mocalloc );
// cpuId.resize( regs[0] );
size_t cpuIdCount = regs[0];
CpuInfo * cpuId = (CpuInfo*)alignedAlloc( 64, sizeof(CpuInfo) * cpuIdCount );
for (size_t i = 0; i < cpuIdCount; ++i)
__cpuidex(cpuId[i].regs, (int)i, 0);
// Get extended CPUID values
__cpuidex(regs, 0x80000000, 0);
//cpuIdEx.resize(regs[0] - 0x80000000);
size_t cpuIdExCount = regs[0] - 0x80000000;
CpuInfo * cpuIdEx = (CpuInfo*)alignedAlloc( 64, sizeof( CpuInfo ) * cpuIdExCount );
for (size_t i = 0; i < cpuIdExCount; ++i)
__cpuidex(cpuIdEx[i].regs, 0x80000000 + (int)i, 0);
#define TEST_BITS(A, B) (((A) & (B)) == (B))
#define TEST_FMA_MOVE_OXSAVE (cpuIdCount >= 1 && TEST_BITS(cpuId[1].regs[2], (1 << 12) | (1 << 22) | (1 << 27)))
#define TEST_LZCNT (cpuIdExCount >= 1 && TEST_BITS(cpuIdEx[1].regs[2], 0x20))
#define TEST_SSE41 (cpuIdCount >= 1 && TEST_BITS(cpuId[1].regs[2], (1 << 19)))
#define TEST_XMM_YMM (cpuIdCount >= 1 && TEST_BITS(_xgetbv(0), (1 << 2) | (1 << 1)))
#define TEST_OPMASK_ZMM (cpuIdCount >= 1 && TEST_BITS(_xgetbv(0), (1 << 7) | (1 << 6) | (1 << 5)))
#define TEST_BMI1_BMI2_AVX2 (cpuIdCount >= 7 && TEST_BITS(cpuId[7].regs[1], (1 << 3) | (1 << 5) | (1 << 8)))
#define TEST_AVX512_F_BW_DQ (cpuIdCount >= 7 && TEST_BITS(cpuId[7].regs[1], (1 << 16) | (1 << 17) | (1 << 30)))
MaskedOcclusionCulling::Implementation retVal = MaskedOcclusionCulling::SSE2;
if (TEST_FMA_MOVE_OXSAVE && TEST_LZCNT && TEST_SSE41)
{
if (TEST_XMM_YMM && TEST_OPMASK_ZMM && TEST_BMI1_BMI2_AVX2 && TEST_AVX512_F_BW_DQ)
retVal = MaskedOcclusionCulling::AVX512;
else if (TEST_XMM_YMM && TEST_BMI1_BMI2_AVX2)
retVal = MaskedOcclusionCulling::AVX2;
}
else if (TEST_SSE41)
retVal = MaskedOcclusionCulling::SSE41;
alignedFree( cpuId );
alignedFree( cpuIdEx );
return retVal;
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Utility functions (not directly related to the algorithm/rasterizer)
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
void MaskedOcclusionCulling::TransformVertices(const float *mtx, const float *inVtx, float *xfVtx, unsigned int nVtx, const VertexLayout &vtxLayout)
{
// This function pretty slow, about 10-20% slower than if the vertices are stored in aligned SOA form.
if (nVtx == 0)
return;
// Load matrix and swizzle out the z component. For post-multiplication (OGL), the matrix is assumed to be column
// major, with one column per SSE register. For pre-multiplication (DX), the matrix is assumed to be row major.
__m128 mtxCol0 = _mm_loadu_ps(mtx);
__m128 mtxCol1 = _mm_loadu_ps(mtx + 4);
__m128 mtxCol2 = _mm_loadu_ps(mtx + 8);
__m128 mtxCol3 = _mm_loadu_ps(mtx + 12);
int stride = vtxLayout.mStride;
const char *vPtr = (const char *)inVtx;
float *outPtr = xfVtx;
// Iterate through all vertices and transform
for (unsigned int vtx = 0; vtx < nVtx; ++vtx)
{
__m128 xVal = _mm_load1_ps((float*)(vPtr));
__m128 yVal = _mm_load1_ps((float*)(vPtr + vtxLayout.mOffsetY));
__m128 zVal = _mm_load1_ps((float*)(vPtr + vtxLayout.mOffsetZ));
__m128 xform = _mm_add_ps(_mm_mul_ps(mtxCol0, xVal), _mm_add_ps(_mm_mul_ps(mtxCol1, yVal), _mm_add_ps(_mm_mul_ps(mtxCol2, zVal), mtxCol3)));
_mm_storeu_ps(outPtr, xform);
vPtr += stride;
outPtr += 4;
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Typedefs
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
typedef MaskedOcclusionCulling::pfnAlignedAlloc pfnAlignedAlloc;
typedef MaskedOcclusionCulling::pfnAlignedFree pfnAlignedFree;
typedef MaskedOcclusionCulling::VertexLayout VertexLayout;
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Common SSE2/SSE4.1 defines
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#define SIMD_LANES 4
#define TILE_HEIGHT_SHIFT 2
#define SIMD_LANE_IDX _mm_setr_epi32(0, 1, 2, 3)
#define SIMD_SUB_TILE_COL_OFFSET _mm_setr_epi32(0, SUB_TILE_WIDTH, SUB_TILE_WIDTH * 2, SUB_TILE_WIDTH * 3)
#define SIMD_SUB_TILE_ROW_OFFSET _mm_setzero_si128()
#define SIMD_SUB_TILE_COL_OFFSET_F _mm_setr_ps(0, SUB_TILE_WIDTH, SUB_TILE_WIDTH * 2, SUB_TILE_WIDTH * 3)
#define SIMD_SUB_TILE_ROW_OFFSET_F _mm_setzero_ps()
#define SIMD_LANE_YCOORD_I _mm_setr_epi32(128, 384, 640, 896)
#define SIMD_LANE_YCOORD_F _mm_setr_ps(128.0f, 384.0f, 640.0f, 896.0f)
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Common SSE2/SSE4.1 functions
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
typedef __m128 __mw;
typedef __m128i __mwi;
#define _mmw_set1_ps _mm_set1_ps
#define _mmw_setzero_ps _mm_setzero_ps
#define _mmw_and_ps _mm_and_ps
#define _mmw_or_ps _mm_or_ps
#define _mmw_xor_ps _mm_xor_ps
#define _mmw_not_ps(a) _mm_xor_ps((a), _mm_castsi128_ps(_mm_set1_epi32(~0)))
#define _mmw_andnot_ps _mm_andnot_ps
#define _mmw_neg_ps(a) _mm_xor_ps((a), _mm_set1_ps(-0.0f))
#define _mmw_abs_ps(a) _mm_and_ps((a), _mm_castsi128_ps(_mm_set1_epi32(0x7FFFFFFF)))
#define _mmw_add_ps _mm_add_ps
#define _mmw_sub_ps _mm_sub_ps
#define _mmw_mul_ps _mm_mul_ps
#define _mmw_div_ps _mm_div_ps
#define _mmw_min_ps _mm_min_ps
#define _mmw_max_ps _mm_max_ps
#define _mmw_movemask_ps _mm_movemask_ps
#define _mmw_cmpge_ps(a,b) _mm_cmpge_ps(a, b)
#define _mmw_cmpgt_ps(a,b) _mm_cmpgt_ps(a, b)
#define _mmw_cmpeq_ps(a,b) _mm_cmpeq_ps(a, b)
#define _mmw_fmadd_ps(a,b,c) _mm_add_ps(_mm_mul_ps(a,b), c)
#define _mmw_fmsub_ps(a,b,c) _mm_sub_ps(_mm_mul_ps(a,b), c)
#define _mmw_shuffle_ps _mm_shuffle_ps
#define _mmw_insertf32x4_ps(a,b,c) (b)
#define _mmw_cvtepi32_ps _mm_cvtepi32_ps
#define _mmw_blendv_epi32(a,b,c) simd_cast<__mwi>(_mmw_blendv_ps(simd_cast<__mw>(a), simd_cast<__mw>(b), simd_cast<__mw>(c)))
#define _mmw_set1_epi32 _mm_set1_epi32
#define _mmw_setzero_epi32 _mm_setzero_si128
#define _mmw_and_epi32 _mm_and_si128
#define _mmw_or_epi32 _mm_or_si128
#define _mmw_xor_epi32 _mm_xor_si128
#define _mmw_not_epi32(a) _mm_xor_si128((a), _mm_set1_epi32(~0))
#define _mmw_andnot_epi32 _mm_andnot_si128
#define _mmw_neg_epi32(a) _mm_sub_epi32(_mm_set1_epi32(0), (a))
#define _mmw_add_epi32 _mm_add_epi32
#define _mmw_sub_epi32 _mm_sub_epi32
#define _mmw_subs_epu16 _mm_subs_epu16
#define _mmw_cmpeq_epi32 _mm_cmpeq_epi32
#define _mmw_cmpgt_epi32 _mm_cmpgt_epi32
#define _mmw_srai_epi32 _mm_srai_epi32
#define _mmw_srli_epi32 _mm_srli_epi32
#define _mmw_slli_epi32 _mm_slli_epi32
#define _mmw_cvtps_epi32 _mm_cvtps_epi32
#define _mmw_cvttps_epi32 _mm_cvttps_epi32
#define _mmx_fmadd_ps _mmw_fmadd_ps
#define _mmx_max_epi32 _mmw_max_epi32
#define _mmx_min_epi32 _mmw_min_epi32
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// SIMD casting functions
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template<typename T, typename Y> FORCE_INLINE T simd_cast(Y A);
template<> FORCE_INLINE __m128 simd_cast<__m128>(float A) { return _mm_set1_ps(A); }
template<> FORCE_INLINE __m128 simd_cast<__m128>(__m128i A) { return _mm_castsi128_ps(A); }
template<> FORCE_INLINE __m128 simd_cast<__m128>(__m128 A) { return A; }
template<> FORCE_INLINE __m128i simd_cast<__m128i>(int A) { return _mm_set1_epi32(A); }
template<> FORCE_INLINE __m128i simd_cast<__m128i>(__m128 A) { return _mm_castps_si128(A); }
template<> FORCE_INLINE __m128i simd_cast<__m128i>(__m128i A) { return A; }
#define MAKE_ACCESSOR(name, simd_type, base_type, is_const, elements) \
FORCE_INLINE is_const base_type * name(is_const simd_type &a) { \
union accessor { simd_type m_native; base_type m_array[elements]; }; \
is_const accessor *acs = reinterpret_cast<is_const accessor*>(&a); \
return acs->m_array; \
}
MAKE_ACCESSOR(simd_f32, __m128, float, , 4)
MAKE_ACCESSOR(simd_f32, __m128, float, const, 4)
MAKE_ACCESSOR(simd_i32, __m128i, int, , 4)
MAKE_ACCESSOR(simd_i32, __m128i, int, const, 4)
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Specialized SSE input assembly function for general vertex gather
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
FORCE_INLINE void GatherVertices(__m128 *vtxX, __m128 *vtxY, __m128 *vtxW, const float *inVtx, const unsigned int *inTrisPtr, int numLanes, const VertexLayout &vtxLayout)
{
for (int lane = 0; lane < numLanes; lane++)
{
for (int i = 0; i < 3; i++)
{
char *vPtrX = (char *)inVtx + inTrisPtr[lane * 3 + i] * vtxLayout.mStride;
char *vPtrY = vPtrX + vtxLayout.mOffsetY;
char *vPtrW = vPtrX + vtxLayout.mOffsetW;
simd_f32(vtxX[i])[lane] = *((float*)vPtrX);
simd_f32(vtxY[i])[lane] = *((float*)vPtrY);
simd_f32(vtxW[i])[lane] = *((float*)vPtrW);
}
}
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// SSE4.1 version
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
namespace MaskedOcclusionCullingSSE41
{
FORCE_INLINE __m128i _mmw_mullo_epi32(const __m128i &a, const __m128i &b) { return _mm_mullo_epi32(a, b); }
FORCE_INLINE __m128i _mmw_min_epi32(const __m128i &a, const __m128i &b) { return _mm_min_epi32(a, b); }
FORCE_INLINE __m128i _mmw_max_epi32(const __m128i &a, const __m128i &b) { return _mm_max_epi32(a, b); }
FORCE_INLINE __m128i _mmw_abs_epi32(const __m128i &a) { return _mm_abs_epi32(a); }
FORCE_INLINE __m128 _mmw_blendv_ps(const __m128 &a, const __m128 &b, const __m128 &c) { return _mm_blendv_ps(a, b, c); }
FORCE_INLINE int _mmw_testz_epi32(const __m128i &a, const __m128i &b) { return _mm_testz_si128(a, b); }
FORCE_INLINE __m128 _mmx_dp4_ps(const __m128 &a, const __m128 &b) { return _mm_dp_ps(a, b, 0xFF); }
FORCE_INLINE __m128 _mmw_floor_ps(const __m128 &a) { return _mm_round_ps(a, _MM_FROUND_TO_NEG_INF | _MM_FROUND_NO_EXC); }
FORCE_INLINE __m128 _mmw_ceil_ps(const __m128 &a) { return _mm_round_ps(a, _MM_FROUND_TO_POS_INF | _MM_FROUND_NO_EXC); }
FORCE_INLINE __m128i _mmw_transpose_epi8(const __m128i &a)
{
const __m128i shuff = _mm_setr_epi8(0x0, 0x4, 0x8, 0xC, 0x1, 0x5, 0x9, 0xD, 0x2, 0x6, 0xA, 0xE, 0x3, 0x7, 0xB, 0xF);
return _mm_shuffle_epi8(a, shuff);
}
FORCE_INLINE __m128i _mmw_sllv_ones(const __m128i &ishift)
{
__m128i shift = _mm_min_epi32(ishift, _mm_set1_epi32(32));
// Uses lookup tables and _mm_shuffle_epi8 to perform _mm_sllv_epi32(~0, shift)
const __m128i byteShiftLUT = _mm_setr_epi8((char)0xFF, (char)0xFE, (char)0xFC, (char)0xF8, (char)0xF0, (char)0xE0, (char)0xC0, (char)0x80, 0, 0, 0, 0, 0, 0, 0, 0);
const __m128i byteShiftOffset = _mm_setr_epi8(0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24, 0, 8, 16, 24);
const __m128i byteShiftShuffle = _mm_setr_epi8(0x0, 0x0, 0x0, 0x0, 0x4, 0x4, 0x4, 0x4, 0x8, 0x8, 0x8, 0x8, 0xC, 0xC, 0xC, 0xC);
__m128i byteShift = _mm_shuffle_epi8(shift, byteShiftShuffle);
byteShift = _mm_min_epi8(_mm_subs_epu8(byteShift, byteShiftOffset), _mm_set1_epi8(8));
__m128i retMask = _mm_shuffle_epi8(byteShiftLUT, byteShift);
return retMask;
}
static MaskedOcclusionCulling::Implementation gInstructionSet = MaskedOcclusionCulling::SSE41;
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Include common algorithm implementation (general, SIMD independent code)
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#include "MaskedOcclusionCullingCommon.inl"
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Utility function to create a new object using the allocator callbacks
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
MaskedOcclusionCulling *CreateMaskedOcclusionCulling(pfnAlignedAlloc alignedAlloc, pfnAlignedFree alignedFree)
{
MaskedOcclusionCullingPrivate *object = (MaskedOcclusionCullingPrivate *)alignedAlloc(64, sizeof(MaskedOcclusionCullingPrivate));
new (object) MaskedOcclusionCullingPrivate(alignedAlloc, alignedFree);
return object;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// SSE2 version
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
namespace MaskedOcclusionCullingSSE2
{
FORCE_INLINE __m128i _mmw_mullo_epi32(const __m128i &a, const __m128i &b)
{
// Do products for even / odd lanes & merge the result
__m128i even = _mm_and_si128(_mm_mul_epu32(a, b), _mm_setr_epi32(~0, 0, ~0, 0));
__m128i odd = _mm_slli_epi64(_mm_mul_epu32(_mm_srli_epi64(a, 32), _mm_srli_epi64(b, 32)), 32);
return _mm_or_si128(even, odd);
}
FORCE_INLINE __m128i _mmw_min_epi32(const __m128i &a, const __m128i &b)
{
__m128i cond = _mm_cmpgt_epi32(a, b);
return _mm_or_si128(_mm_andnot_si128(cond, a), _mm_and_si128(cond, b));
}
FORCE_INLINE __m128i _mmw_max_epi32(const __m128i &a, const __m128i &b)
{
__m128i cond = _mm_cmpgt_epi32(b, a);
return _mm_or_si128(_mm_andnot_si128(cond, a), _mm_and_si128(cond, b));
}
FORCE_INLINE __m128i _mmw_abs_epi32(const __m128i &a)
{
__m128i mask = _mm_cmplt_epi32(a, _mm_setzero_si128());
return _mm_add_epi32(_mm_xor_si128(a, mask), _mm_srli_epi32(mask, 31));
}
FORCE_INLINE int _mmw_testz_epi32(const __m128i &a, const __m128i &b)
{
return _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_and_si128(a, b), _mm_setzero_si128())) == 0xFFFF;
}
FORCE_INLINE __m128 _mmw_blendv_ps(const __m128 &a, const __m128 &b, const __m128 &c)
{
__m128 cond = _mm_castsi128_ps(_mm_srai_epi32(_mm_castps_si128(c), 31));
return _mm_or_ps(_mm_andnot_ps(cond, a), _mm_and_ps(cond, b));
}
FORCE_INLINE __m128 _mmx_dp4_ps(const __m128 &a, const __m128 &b)
{
// Product and two shuffle/adds pairs (similar to hadd_ps)
__m128 prod = _mm_mul_ps(a, b);
__m128 dp = _mm_add_ps(prod, _mm_shuffle_ps(prod, prod, _MM_SHUFFLE(2, 3, 0, 1)));
dp = _mm_add_ps(dp, _mm_shuffle_ps(dp, dp, _MM_SHUFFLE(0, 1, 2, 3)));
return dp;
}
FORCE_INLINE __m128 _mmw_floor_ps(const __m128 &a)
{
int originalMode = _MM_GET_ROUNDING_MODE();
_MM_SET_ROUNDING_MODE(_MM_ROUND_DOWN);
__m128 rounded = _mm_cvtepi32_ps(_mm_cvtps_epi32(a));
_MM_SET_ROUNDING_MODE(originalMode);
return rounded;
}
FORCE_INLINE __m128 _mmw_ceil_ps(const __m128 &a)
{
int originalMode = _MM_GET_ROUNDING_MODE();
_MM_SET_ROUNDING_MODE(_MM_ROUND_UP);
__m128 rounded = _mm_cvtepi32_ps(_mm_cvtps_epi32(a));
_MM_SET_ROUNDING_MODE(originalMode);
return rounded;
}
FORCE_INLINE __m128i _mmw_transpose_epi8(const __m128i &a)
{
// Perform transpose through two 16->8 bit pack and byte shifts
__m128i res = a;
const __m128i mask = _mm_setr_epi8(~0, 0, ~0, 0, ~0, 0, ~0, 0, ~0, 0, ~0, 0, ~0, 0, ~0, 0);
res = _mm_packus_epi16(_mm_and_si128(res, mask), _mm_srli_epi16(res, 8));
res = _mm_packus_epi16(_mm_and_si128(res, mask), _mm_srli_epi16(res, 8));
return res;
}
FORCE_INLINE __m128i _mmw_sllv_ones(const __m128i &ishift)
{
__m128i shift = _mmw_min_epi32(ishift, _mm_set1_epi32(32));
// Uses scalar approach to perform _mm_sllv_epi32(~0, shift)
static const unsigned int maskLUT[33] = {
~0U << 0, ~0U << 1, ~0U << 2 , ~0U << 3, ~0U << 4, ~0U << 5, ~0U << 6 , ~0U << 7, ~0U << 8, ~0U << 9, ~0U << 10 , ~0U << 11, ~0U << 12, ~0U << 13, ~0U << 14 , ~0U << 15,
~0U << 16, ~0U << 17, ~0U << 18 , ~0U << 19, ~0U << 20, ~0U << 21, ~0U << 22 , ~0U << 23, ~0U << 24, ~0U << 25, ~0U << 26 , ~0U << 27, ~0U << 28, ~0U << 29, ~0U << 30 , ~0U << 31,
0U };
__m128i retMask;
simd_i32(retMask)[0] = (int)maskLUT[simd_i32(shift)[0]];
simd_i32(retMask)[1] = (int)maskLUT[simd_i32(shift)[1]];
simd_i32(retMask)[2] = (int)maskLUT[simd_i32(shift)[2]];
simd_i32(retMask)[3] = (int)maskLUT[simd_i32(shift)[3]];
return retMask;
}
static MaskedOcclusionCulling::Implementation gInstructionSet = MaskedOcclusionCulling::SSE2;
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Include common algorithm implementation (general, SIMD independent code)
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
#include "MaskedOcclusionCullingCommon.inl"
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Utility function to create a new object using the allocator callbacks
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
MaskedOcclusionCulling *CreateMaskedOcclusionCulling(pfnAlignedAlloc alignedAlloc, pfnAlignedFree alignedFree)
{
MaskedOcclusionCullingPrivate *object = (MaskedOcclusionCullingPrivate *)alignedAlloc(64, sizeof(MaskedOcclusionCullingPrivate));
new (object) MaskedOcclusionCullingPrivate(alignedAlloc, alignedFree);
return object;
}
};
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Object construction and allocation
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
namespace MaskedOcclusionCullingAVX512
{
extern MaskedOcclusionCulling *CreateMaskedOcclusionCulling(pfnAlignedAlloc alignedAlloc, pfnAlignedFree alignedFree);
}
namespace MaskedOcclusionCullingAVX2
{
extern MaskedOcclusionCulling *CreateMaskedOcclusionCulling(pfnAlignedAlloc alignedAlloc, pfnAlignedFree alignedFree);
}
MaskedOcclusionCulling *MaskedOcclusionCulling::Create(Implementation RequestedSIMD)
{
return Create(RequestedSIMD, aligned_alloc, aligned_free);
}
MaskedOcclusionCulling *MaskedOcclusionCulling::Create(Implementation RequestedSIMD, pfnAlignedAlloc alignedAlloc, pfnAlignedFree alignedFree)
{
MaskedOcclusionCulling *object = nullptr;
MaskedOcclusionCulling::Implementation impl = DetectCPUFeatures(alignedAlloc, alignedFree);
if (RequestedSIMD < impl)
impl = RequestedSIMD;
// Return best supported version
if (object == nullptr && impl >= AVX512)
object = MaskedOcclusionCullingAVX512::CreateMaskedOcclusionCulling(alignedAlloc, alignedFree); // Use AVX512 version
if (object == nullptr && impl >= AVX2)
object = MaskedOcclusionCullingAVX2::CreateMaskedOcclusionCulling(alignedAlloc, alignedFree); // Use AVX2 version
if (object == nullptr && impl >= SSE41)
object = MaskedOcclusionCullingSSE41::CreateMaskedOcclusionCulling(alignedAlloc, alignedFree); // Use SSE4.1 version
if (object == nullptr)
object = MaskedOcclusionCullingSSE2::CreateMaskedOcclusionCulling(alignedAlloc, alignedFree); // Use SSE2 (slow) version
return object;
}
void MaskedOcclusionCulling::Destroy(MaskedOcclusionCulling *moc)
{
pfnAlignedFree alignedFreeCallback = moc->mAlignedFreeCallback;
moc->~MaskedOcclusionCulling();
alignedFreeCallback(moc);
}