diff --git a/docs/source/07_extend_kedro/04_plugins.md b/docs/source/07_extend_kedro/04_plugins.md index f87452c75a..81cc1cccc2 100644 --- a/docs/source/07_extend_kedro/04_plugins.md +++ b/docs/source/07_extend_kedro/04_plugins.md @@ -149,3 +149,4 @@ When you are ready to submit your code: - [Kedro-Accelerator](https://github.com/deepyaman/kedro-accelerator), by [Deepyaman Datta](https://github.com/deepyaman), speeds up pipelines by parallelizing I/O in the background - [kedro-dataframe-dropin](https://github.com/mzjp2/kedro-dataframe-dropin), by [Zain Patel](https://github.com/mzjp2), lets you swap out pandas datasets for modin or RAPIDs equivalents for specialised use to speed up your workflows (e.g on GPUs) - [kedro-kubeflow](https://github.com/getindata/kedro-kubeflow), by [Mateusz Pytel](https://github.com/em-pe) and [Mariusz Strzelecki](https://github.com/szczeles), lets you run and schedule pipelines on Kubernetes clusters using [Kubeflow Pipelines](https://www.kubeflow.org/docs/pipelines/overview/pipelines-overview/) +- [kedro-mlflow](https://github.com/Galileo-Galilei/kedro-mlflow), by [Yolan Honoré-Rougé](https://github.com/galileo-galilei), [Kajetan Maurycy Olszewski](https://github.com/kaemo), and [Takieddine Kadiri](https://github.com/takikadiri) facilitates [Mlflow](https://www.mlflow.org/) integration inside Kedro projects while enforcing [Kedro's principles](https://kedro.readthedocs.io/en/stable/12_faq/01_faq.html#what-are-the-primary-advantages-of-kedro). Its main features are modular configuration, automatic parameters tracking, datasets versioning, Kedro pipelines packaging and serving and automatic synchronization between training and inference pipelines for high reproducibility of machine learning experiments and ease of deployment. A tutorial is provided in the [kedro-mlflow-tutorial repo](https://github.com/Galileo-Galilei/kedro-mlflow-tutorial).