-
Notifications
You must be signed in to change notification settings - Fork 5
/
catalog.yml
91 lines (67 loc) · 2 KB
/
catalog.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
# Here you can define all your data sets by using simple YAML syntax.
#
# Documentation for this file format can be found in "The Data Catalog"
# Link: https://kedro.readthedocs.io/en/stable/05_data/01_data_catalog.html
#### ETL
instances:
type: pickle.PickleDataSet
filepath: data/01_raw/instances_${huggingface_split}.pkl
labels:
type: pickle.PickleDataSet
filepath: data/01_raw/labels_${huggingface_split}.pkl
#### TRAINING
english_stopwords:
type: yaml.YAMLDataSet
filepath: data/01_raw/stopwords.yml
label_encoder:
type: pickle.PickleDataSet
filepath: data/06_models/label_encoder.pkl
keras_tokenizer:
type: pickle.PickleDataSet
filepath: data/06_models/keras_tokenizer.pkl
x_train:
type: pickle.PickleDataSet
filepath: data/04_feature/x_train.pkl
x_test:
type: pickle.PickleDataSet
filepath: data/04_feature/x_test.pkl
y_train:
type: pickle.PickleDataSet
filepath: data/04_feature/y_train.pkl
y_test:
type: pickle.PickleDataSet
filepath: data/04_feature/y_test.pkl
xgb_model:
type: pickle.PickleDataSet
filepath: data/06_models/xgb_model.pkl
xgb_train_auc:
type: kedro_mlflow.io.metrics.MlflowMetricHistoryDataSet
save_args:
mode: list
xgb_eval_auc:
type: kedro_mlflow.io.metrics.MlflowMetricHistoryDataSet
save_args:
mode: list
xgb_train_logloss:
type: kedro_mlflow.io.metrics.MlflowMetricHistoryDataSet
save_args:
mode: list
xgb_eval_logloss:
type: kedro_mlflow.io.metrics.MlflowMetricHistoryDataSet
save_args:
mode: list
xgb_feature_importance:
type: kedro_mlflow.io.artifacts.MlflowArtifactDataSet
data_set:
type: matplotlib.MatplotlibWriter
filepath: data\08_reporting\xgb_feature_importance.png
#### USER_APP
pipeline_inference_model:
type: kedro_mlflow.io.models.MlflowModelLoggerDataSet
flavor: mlflow.pyfunc
pyfunc_workflow: python_model
artifact_path: kedro_mlflow_tutorial
run_id: ${run_id_to_serve}
predictions:
type: pickle.PickleDataSet
filepath: data/07_model_output/predictions_${huggingface_split}.pkl