Skip to content

This application makes predictions by multiplying a probability vector with a transition matrix multiple times (n steps - user defined). On each step the values from the resulting probability vectors are plotted on a chart. The resulting curves on the chart indicate the behavior of the system over a number of steps.

License

Notifications You must be signed in to change notification settings

Gagniuc/Markov-Chains-Prediction-framework

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Markov Chains Prediction framework

The application multiplies a probability vector with a transition matrix multiple times (n steps - user defined). On each step, the values from the resulting probability vectors are plotted on a chart. The resulting curves on the chart indicate the behavior of the system over n steps. Note that the application allows a prediction for systems with a maximum of four states. This version in JS can also be of use: Predictions with Markov Chains.

screenshot

screenshot

References

  • Paul A. Gagniuc. Markov chains: from theory to implementation and experimentation. Hoboken, NJ, John Wiley & Sons, USA, 2017, ISBN: 978-1-119-38755-8.

About

This application makes predictions by multiplying a probability vector with a transition matrix multiple times (n steps - user defined). On each step the values from the resulting probability vectors are plotted on a chart. The resulting curves on the chart indicate the behavior of the system over a number of steps.

Topics

Resources

License

Stars

Watchers

Forks

Sponsor this project

 

Packages

No packages published