-
Notifications
You must be signed in to change notification settings - Fork 12
/
snr_map.py
382 lines (309 loc) · 13.5 KB
/
snr_map.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
"""
Map of local SNR across a flood phantom slice.
Introduction
============
The SNR for each voxel in an image (of a flood phantom) is estimated as the SNR
of a ROI centred on that voxel following the single image SNR method of McCann
et al. [1]_. The SNR map can show variation in SNR caused by smoothing filters.
It also highlights small regions of low signal which could be caused by micro-
bubbles or foreign bodies in the phantom. These inhomogeneities can erroneously
reduce SNR measurements made by other methods.
Algorithm overview
==================
1. Apply boxcar smoothing to original image to create smooth image.
2. Create noise image by subtracting smooth image from original image.
3. Create image mask to remove background using e.g.
skimage.filters.threshold_minimum
4. Calculate SNR using McCann's method and overlay ROIs on image.
5. Estimate local noise as standard deviation of pixel values in ROI centred on
a pixel. Repeat for each pixel in the noise image.
6. Plot the local noise as a heat map.
References
===========
McCann, A. J., Workman, A., & McGrath, C. (2013). A quick and robust
method for measurement of signal-to-noise ratio in MRI. Physics in Medicine
& Biology, 58(11), 3775.
"""
import os
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from scipy import ndimage
from skimage import filters
import skimage.morphology
from hazenlib.HazenTask import HazenTask
from hazenlib.logger import logger
class SNRMap(HazenTask):
"""Signal-to-noise ratio mapping class for DICOM images of the MagNet phantom
Inherits from HazenTask class
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.single_dcm = self.dcm_list[0]
# Initialise variables
self.kernel_size = 9
self.roi_size = 20
self.roi_distance = 40
# ----
# * Scale ROI distance to account for different image sizes.
# * Pass kernel_size and roi_size parameters from command line.
def run(self):
"""Main function for performing signal-to-noise ratio mapping
Returns SNR parametric map on flood phantom DICOM file.
Notes:
Five square ROIs are created, one at the image centre, and four peripheral
ROIs with their centres displaced at 45, 135, 225 and 315 degrees from the
centre. Displays and saves a parametric map.
Returns:
dict: results are returned in a standardised dictionary structure specifying the task name, input DICOM Series Description + SeriesNumber + InstanceNumber, task measurement key-value pairs, optionally path to the generated images for visualisation
"""
results = self.init_result_dict()
img_desc = self.img_desc(self.single_dcm)
results["file"] = img_desc
# Create original, smoothed and noise images
# ==========================================
original, smoothed, noise = self.smooth(
dcm=self.single_dcm, kernel=self.kernel_size
)
"""
# Note: access NumPy arrays by column then row. E.g.
#
# t=np.array([[1,2,3],[4,5,6]])
# t
# Out[118]:
# array([[1, 2, 3],
# [4, 5, 6]])
#
# t[1,0]
# Out[119]: 4 # not 2
#
# Confusingly, patches (circles, rectangles) use traditional [x,y]
# positioning. To centre a circle on pixel [a,b], the circle must be
# centred on [b,a]. The function np.flip(coords) can help.
"""
# Calculate mask and identify ROIs
# =======================
image_centre, roi_corners = self.get_rois(smoothed)
# Calculate SNR
# =============
snr = self.calc_snr(original, noise, roi_corners)
# Generate local SNR parametric map
# =================================
snr_map = self.calc_snr_map(original, noise)
results["measurement"] = {"snr by smoothing": round(snr, 2)}
if self.report:
# Plot images
# ===========
fig_detailed = self.plot_detailed(
original, smoothed, noise, snr, snr_map, image_centre, roi_corners
)
fig_summary = self.plot_summary(snr_map, original, roi_corners)
# Save images
# ===========
detailed_image_path = os.path.join(
self.report_path, f"{img_desc}_snr_map_detailed.png"
)
summary_image_path = os.path.join(
self.report_path, f"{img_desc}_snr_map.png"
)
fig_detailed.savefig(detailed_image_path, dpi=300)
fig_summary.savefig(summary_image_path, dpi=300)
self.report_files.append(summary_image_path)
self.report_files.append(detailed_image_path)
results["report_image"] = self.report_files
return results
def smooth(self, dcm, kernel: int = 9):
"""Create noise and smoothed images from original_image.
Args:
dcm (pydicom.Dataset): DICOM image object
kernel (int): Kernel used for smoothing. Default is 9x9 boxcar.
Returns:
tuple of np.ndarray: original, smoothed and noise images (pixel array)
"""
original_image = dcm.pixel_array.astype(float)
# Warn if not 256 x 256 image
# TODO scale distances for other image sizes
if original_image.shape != (256, 256):
logger.warning(
"Expected image size (256, 256). Image size is %r."
" Algorithm untested with these dimensions.",
original_image.shape,
)
normalised_kernel = (
skimage.morphology.square(kernel) / skimage.morphology.square(kernel).sum()
)
# kernel = kernel / kernel.sum() # normalise kernel
smooth_image = ndimage.filters.convolve(original_image, normalised_kernel)
# Alternative method 1: OpenCV.
# smooth_image = cv2.blur(original_image, (kernel_size, kernel_size))
# Alternative method 2: scipy.ndimage.
# kernel = np.ones([kernel_size, kernel_size], float)
# kernel = kernel / kernel.sum() # normalise kernel
# smooth_image = ndimage.filters.convolve(original_image, kernel)
# Note: filters.convolve and filters.correlate produce identical output
# for symetric kernels. Be careful with other kernels.
noise_image = original_image - smooth_image
return original_image, smooth_image, noise_image
def get_rois(self, smooth_image):
"""Identify phantom and generate ROI locations.
Args:
smooth_image (np.ndarray): pixel array of the smoothed image
Returns:
tuple of image_centre (tuple), roi_corners (list of int)
"""
# Threshold from smooth_image to reduce noise effects
threshold = filters.threshold_minimum(smooth_image)
self.mask = smooth_image > threshold
# Get centroid (=centre of mass for binary image) and convert to array
image_centre = np.array(ndimage.measurements.center_of_mass(self.mask))
logger.debug("image_centre = %r.", image_centre)
# Store corner of centre ROI, cast as int for indexing
roi_corners = [np.rint(image_centre - self.roi_size / 2).astype(int)]
# Add corners of remaining ROIs
roi_distance = self.roi_distance
roi_corners.append(roi_corners[0] + [-roi_distance, -roi_distance])
roi_corners.append(roi_corners[0] + [roi_distance, -roi_distance])
roi_corners.append(roi_corners[0] + [-roi_distance, roi_distance])
roi_corners.append(roi_corners[0] + [roi_distance, roi_distance])
return image_centre, roi_corners
def calc_snr(self, original_image, noise_image, roi_corners):
"""Calculate SNR from original_image and noise_image.
Args:
original_image (np.ndarray): original pixel array
noise_image (np.ndarray): pixel array of the image noise
roi_corners (list): list of tuples corresponding to coordinates of the ROI corners
Returns:
float: signal to noise ratio value
"""
roi_signal = []
roi_noise = []
for [x, y] in roi_corners:
roi_signal.append(
original_image[x : x + self.roi_size, y : y + self.roi_size].mean()
)
roi_noise.append(
noise_image[x : x + self.roi_size, y : y + self.roi_size].std(ddof=1)
)
# Note: *.std(ddof=1) uses sample standard deviation, default ddof=0
# uses population std dev. Not sure which is statistically correct,
# but using ddof=1 for consistency with IDL code.
roi_snr = np.array(roi_signal) / np.array(roi_noise)
snr = roi_snr.mean()
logger.debug("ROIs signal=%r, noise=%r, snr=%r", roi_signal, roi_noise, roi_snr)
return snr
def calc_snr_map(self, original_image, noise_image):
"""Calculate SNR map from original_image and noise_image.
Args:
original_image (np.ndarray): original pixel array
noise_image (np.ndarray): pixel array of the image noise
Returns:
snr_map
"""
# If you need a faster (less transparent) implementation, see:
# https://nickc1.github.io/python,/matlab/2016/05/17/Standard-Deviation-(Filters)-in-Matlab-and-Python.html
noise_map = ndimage.filters.generic_filter(
noise_image, lambda x: np.std(x, ddof=1), size=self.roi_size
)
signal_map = ndimage.filters.uniform_filter(original_image, size=self.roi_size)
snr_map = signal_map / noise_map
return snr_map
def draw_roi_rectangles(self, roi_corners, ax):
"""Add ROI rectangle overlays to plot.
Args:
roi_corners (list): list of coordinates (col, row) of ROI corners
ax (matplotlib.axes): diagram axes to visualise rectangles on
Returns:
None
adds rectangle overlay to matplotlib axes
"""
for corner in roi_corners:
rect = patches.Rectangle(
np.flip(corner),
self.roi_size,
self.roi_size,
linewidth=1,
edgecolor="r",
facecolor="none",
)
ax.add_patch(rect)
def plot_snr_map(self, snr_map, fig, ax):
"""Add SNR map to a figure axis.
Args:
snr_map (__type__): SNR map diagram to visualise
fig (matplotlib.pyplot.fig): figure handle
ax (matplotlib.axes): diagram axes to visualise rectangles on
Returns
None
adds SNR map overlay to matplotlib axes on figure
"""
para_im = ax.imshow(snr_map, cmap="viridis", vmin=0)
cax = fig.add_axes(
[
ax.get_position().x1 + 0.01,
ax.get_position().y0,
0.02,
ax.get_position().height,
]
)
plt.colorbar(para_im, cax=cax)
ax.set_title("SNR map")
def plot_detailed(
self,
original_image,
smooth_image,
noise_image,
snr,
snr_map,
image_centre,
roi_corners,
):
"""Create 4-image detailed SNR map plots
Args:
original_image (np.ndarray): original image pixel array
smooth_image (np.ndarray): smoothed pixel array
noise_image (np.ndarray): noise image pixel array
snr (float): SNR value to add to the plot title
snr_map (np.ndarray): _description_
image_centre (tuple or list): coordinates of the image centre
roi_corners (list of list): coordinates (col, row) of ROI corners
Returns:
matplotlib.figure.Figure: figure handle with plots
"""
fig, axs = plt.subplots(1, 4, sharex=True, sharey=True, figsize=(8, 2.8))
fig.suptitle(
"SNR = %.2f (file: %s)" % (snr, os.path.basename(self.single_dcm.filename))
)
axs[0].imshow(original_image, cmap="gray")
axs[0].set_title("Magnitude Image")
axs[1].imshow(smooth_image, cmap="gray")
axs[1].contour(self.mask, colors="y")
phantom_centre_marker = patches.Circle(
np.flip(np.rint(image_centre).astype("int")), color="y"
)
axs[1].add_patch(phantom_centre_marker)
axs[1].set_title("Smoothed")
axs[2].imshow(noise_image, cmap="gray")
axs[2].set_title("Noise")
self.draw_roi_rectangles(roi_corners, axs[0])
self.draw_roi_rectangles(roi_corners, axs[2])
self.plot_snr_map(snr_map, fig, axs[3])
for ax in axs:
ax.axis("off")
return fig
def plot_summary(self, snr_map, original_image, roi_corners):
"""Create 2-image summary SNR map plot.
Args:
original_image (np.ndarray): original image pixel array
snr_map (np.ndarray): _description_
roi_corners (list of list): coordinates (col, row) of ROI corners
Returns:
matplotlib.figure.Figure: figure handle with plots
"""
fig, axs = plt.subplots(1, 2, sharex=True, sharey=True, figsize=(6, 2.8))
axs[0].imshow(original_image, cmap="gray")
axs[0].set_title("Magnitude Image")
self.draw_roi_rectangles(roi_corners, axs[0])
self.plot_snr_map(snr_map, fig, axs[1])
for ax in axs:
ax.axis("off")
return fig