-
Notifications
You must be signed in to change notification settings - Fork 12
/
snr.py
495 lines (396 loc) · 17.1 KB
/
snr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
"""
SNR(Im)
Calculates the SNR for a single-slice image of a uniform MRI phantom
This script utilises the smoothed subtraction method described in McCann 2013:
A quick and robust method for measurement of signal-to-noise ratio in MRI, Phys. Med. Biol. 58 (2013) 3775:3790
Created by Neil Heraghty
04/05/2018
"""
import os
import pydicom
import cv2 as cv
import numpy as np
import skimage.filters
from scipy import ndimage
import hazenlib.utils
import hazenlib.exceptions as exc
from hazenlib.HazenTask import HazenTask
from hazenlib.logger import logger
class SNR(HazenTask):
"""Signal-to-noise ratio measurement class for DICOM images of the MagNet phantom
Inherits from HazenTask class
"""
def __init__(self, **kwargs):
super().__init__(**kwargs)
# measured slice width is expected to be a floating point number
try:
self.measured_slice_width = float(kwargs["measured_slice_width"])
except:
self.measured_slice_width = None
# Determining kernel size based on coil choice. Values of 9 and 25 come from McCann 2013 paper.
try:
coil = kwargs["coil"]
if coil is None or coil.lower() in ["hc", "head"]:
self.kernel_size = 9
elif coil.lower() in ["bc", "body"]:
self.kernel_size = 25
except:
self.kernel_size = 9
def run(self) -> dict:
"""Main function for performing signal-to-noise ratio measurement
Notes:
Five square ROIs are created, one at the image centre, and four peripheral
ROIs with their centres displaced at 45, 135, 225 and 315 degrees from the
centre.
Returns:
dict: results are returned in a standardised dictionary structure specifying the task name, input DICOM Series Description + SeriesNumber + InstanceNumber, task measurement key-value pairs, optionally path to the generated images for visualisation
"""
results = self.init_result_dict()
results["file"] = [self.img_desc(img) for img in self.dcm_list]
results["measurement"]["snr by smoothing"] = {}
# SUBTRACTION METHOD with a pair of input files
if len(self.dcm_list) == 2:
snr, normalised_snr = self.snr_by_subtraction(
self.dcm_list[0], self.dcm_list[1], self.measured_slice_width
)
results["measurement"]["snr by subtraction"] = {
"measured": round(snr, 2),
"normalised": round(normalised_snr, 2),
}
# SINGLE METHOD (SMOOTHING) for every input file
for idx, dcm in enumerate(self.dcm_list):
snr, normalised_snr = self.snr_by_smoothing(dcm, self.measured_slice_width)
results["measurement"]["snr by smoothing"][self.img_desc(dcm)] = {
"measured": round(snr, 2),
"normalised": round(normalised_snr, 2),
}
# only return reports if requested
if self.report:
results["report_image"] = self.report_files
return results
def two_inputs_match(self, dcm1: pydicom.Dataset, dcm2: pydicom.Dataset) -> bool:
"""Check if two DICOMs are sufficiently similar, based on the following fields
"StudyInstanceUID", "RepetitionTime", "EchoTime", "FlipAngle"
Args:
dcm1 (pydicom.Dataset): DICOM object to compare
dcm2 (pydicom.Dataset): _description_
Returns:
bool: _description_
"""
fields_to_match = [
"StudyInstanceUID",
"RepetitionTime",
"EchoTime",
"FlipAngle",
]
for field in fields_to_match:
if dcm1.get(field) != dcm2.get(field):
return False
return True
def get_normalised_snr_factor(
self, dcm: pydicom.Dataset, measured_slice_width=None
) -> float:
"""Calculates SNR normalisation factor.
Notes:
Method matches MATLAB script.
Utilises user provided slice_width if provided. Else finds from dcm.
Finds dx, dy and bandwidth from dcm.
Seeks to find TR, image columns and rows from dcm. Else uses default values.
Args:
dcm (pydicom.Dataset): DICOM image object
measured_slice_width (float or None): slice width from user input
Returns:
float: normalised snr factor
"""
dx, dy = hazenlib.utils.get_pixel_size(dcm)
bandwidth = hazenlib.utils.get_bandwidth(dcm)
TR = hazenlib.utils.get_TR(dcm)
rows = hazenlib.utils.get_rows(dcm)
columns = hazenlib.utils.get_columns(dcm)
if measured_slice_width:
slice_thickness = measured_slice_width
else:
slice_thickness = hazenlib.utils.get_slice_thickness(dcm)
averages = hazenlib.utils.get_average(dcm)
bandwidth_factor = np.sqrt((bandwidth * columns / 2) / 1000) / np.sqrt(30)
voxel_factor = 1 / (0.001 * dx * dy * slice_thickness)
normalised_snr_factor = (
bandwidth_factor
* voxel_factor
* (1 / (np.sqrt(averages * rows * (TR / 1000))))
)
return normalised_snr_factor
def filtered_image(self, dcm: pydicom.Dataset) -> np.array:
"""Performs a 2D convolution (for filtering images)
using uniform_filter SciPy function and a kernel size based on user input coil
Args:
dcm (pydicom.Dataset): DICOM image to be filtered
Returns:
np.array: filtered image pixel values
"""
a = dcm.pixel_array.astype("int")
# filter size = 9, following MATLAB code and McCann 2013 paper for head coil, although note McCann 2013 recommends 25x25 for body coil.
# 9 for head coil, 25 for body coil
filtered_array = ndimage.uniform_filter(a, self.kernel_size, mode="constant")
return filtered_array
def get_noise_image(self, dcm: pydicom.Dataset) -> np.array:
"""Separates the image noise
by smoothing the image and subtracting the smoothed image from the original.
Args:
dcm (pydicom.Dataset): DICOM image to get noise from
Returns:
np.array: pixel array representing the image noise
"""
a = dcm.pixel_array.astype("int")
# Convolve image with boxcar/uniform kernel
imsmoothed = self.filtered_image(dcm)
# Subtract smoothed array from original
imnoise = a - imsmoothed
return imnoise
def threshold_image(self, dcm: pydicom.Dataset):
"""Determine threshold and mask based on image
Args:
dcm (pydicom.Dataset): DICOM image to get noise from
Returns:
tuple of np.array: (imthresholded, mask)
pixel array representing the image above threshold
and a corresponding mask
"""
a = dcm.pixel_array.astype("int")
# threshold_li: Pixels > this value are assumed foreground
threshold_value = skimage.filters.threshold_li(a)
# print('threshold_value =', threshold_value)
mask = a > threshold_value
imthresholded = np.zeros_like(a)
imthresholded[mask] = a[mask]
# # For debugging: Threshold figures:
# from matplotlib import pyplot as plt
# plt.figure()
# fig, ax = plt.subplots(2, 2)
# ax[0, 0].imshow(a)
# ax[0, 1].imshow(mask)
# ax[1, 0].imshow(imthresholded)
# ax[1, 1].imshow(a-imthresholded)
# fig.savefig("../THRESHOLD.png")
return imthresholded, mask
def get_binary_mask_centre(self, binary_mask) -> (int, int):
"""Determine coordinates of binary polygonal shape's centre
Args:
binary_mask: mask of a shape
Returns:
tuple of int corresponding to centroid_coords: (col:int, row:int)
"""
from skimage import util
from skimage.measure import label, regionprops
img = util.img_as_ubyte(binary_mask) > 0
label_img = label(img, connectivity=img.ndim)
props = regionprops(label_img)
col = int(props[0].centroid[0])
row = int(props[0].centroid[1])
# print('Centroid coords [x,y] =', col, row)
return int(col), int(row)
def get_roi_samples(
self, ax, dcm: pydicom.Dataset or np.ndarray, centre_col: int, centre_row: int
) -> list:
"""Determine region of interest from a pixel array
Args:
ax (matplotlib axes): diagram axis for visualisation with matplotlib
dcm (pydicom.Dataset or np.ndarray): image pixel array
centre_col (int): center coordinate column
centre_row (int): center coordinate row
Returns:
list of np.ndarray: corresponding to pixel array subsets at predefined ROI
"""
if type(dcm) == np.ndarray:
data = dcm
else:
data = dcm.pixel_array
sample = [None] * 5
# for array indexing: [row, column] format
sample[0] = data[
(centre_row - 10) : (centre_row + 10), (centre_col - 10) : (centre_col + 10)
]
sample[1] = data[
(centre_row - 50) : (centre_row - 30), (centre_col - 50) : (centre_col - 30)
]
sample[2] = data[
(centre_row + 30) : (centre_row + 50), (centre_col - 50) : (centre_col - 30)
]
sample[3] = data[
(centre_row - 50) : (centre_row - 30), (centre_col + 30) : (centre_col + 50)
]
sample[4] = data[
(centre_row + 30) : (centre_row + 50), (centre_col + 30) : (centre_col + 50)
]
if ax:
from matplotlib.patches import Rectangle
from matplotlib.collections import PatchCollection
# for patches: [column/x, row/y] format
rects = [
Rectangle((centre_col - 10, centre_row - 10), 20, 20),
Rectangle((centre_col - 50, centre_row - 50), 20, 20),
Rectangle((centre_col + 30, centre_row - 50), 20, 20),
Rectangle((centre_col - 50, centre_row + 30), 20, 20),
Rectangle((centre_col + 30, centre_row + 30), 20, 20),
]
pc = PatchCollection(
rects, edgecolors="red", facecolors="None", label="ROIs"
)
ax.add_collection(pc)
return sample
def get_object_centre(self, dcm) -> (int, int):
"""Find the phantom object within the image and return its centre col and row value.
Note first element in output = col, second = row.
Args:
dcm (pydicom.Dataset): DICOM image to get noise from
Returns:
tuple of int corresponding to centroid_coords: (col:int, row:int)
"""
# Shape Detection
try:
logger.debug("Performing phantom shape detection.")
shape_detector = hazenlib.utils.ShapeDetector(arr=dcm.pixel_array)
orientation = hazenlib.utils.get_image_orientation(dcm)
if orientation in ["Sagittal", "Coronal"]:
logger.debug("Orientation = sagittal or coronal.")
# orientation is sagittal to patient
try:
(col, row), size, angle = shape_detector.get_shape("rectangle")
except exc.ShapeError as e:
# shape_detector.find_contours()
# shape_detector.detect()
# contour = shape_detector.shapes['rectangle'][1]
# angle, centre, size = cv.minAreaRect(contour)
# print((angle, centre, size))
# im = cv.drawContours(dcm.pixel_array.copy(), [shape_detector.contours[0]], -1, (0, 255, 255), 10)
# plt.imshow(im)
# plt.savefig("rectangles.png")
# print(shape_detector.shapes.keys())
raise e
elif orientation == "Transverse":
logger.debug("Orientation = transverse.")
try:
col, row, r = shape_detector.get_shape("circle")
except exc.MultipleShapesError:
logger.info(
"Warning! Found multiple circles in image, will assume largest circle is phantom."
)
col, row, r = self.get_largest_circle(
shape_detector.shapes["circle"]
)
else:
raise exc.ShapeError("Unable to identify phantom shape.")
# Threshold Detection
except exc.ShapeError:
logger.info(
"Shape detection failed. Performing object centre measurement by thresholding."
)
_, mask = self.threshold_image(dcm)
row, col = self.get_binary_mask_centre(mask)
return int(col), int(row)
def snr_by_smoothing(self, dcm: pydicom.Dataset, measured_slice_width=None):
"""Calculate signal to noise ratio by smoothing
Args:
dcm (pydicom.Dataset): DICOM image object
measured_slice_width (float or None): slice width from user input
Returns:
tuple of float: SNR and normalised SNR values
"""
col, row = self.get_object_centre(dcm)
noise_img = self.get_noise_image(dcm)
signal = [
np.mean(roi)
for roi in self.get_roi_samples(
ax=None, dcm=dcm, centre_col=col, centre_row=row
)
]
noise = [
np.std(roi, ddof=1)
for roi in self.get_roi_samples(
ax=None, dcm=noise_img, centre_col=col, centre_row=row
)
]
# note no root_2 factor in noise for smoothed subtraction (one image) method, replicating Matlab approach and McCann 2013
snr = np.mean(np.divide(signal, noise))
normalised_snr = snr * self.get_normalised_snr_factor(dcm, measured_slice_width)
if self.report:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(1, 1)
fig.set_size_inches(5, 5)
fig.tight_layout(pad=1)
axes.set_title("smoothed noise image")
axes.imshow(noise_img, cmap="gray", label="smoothed noise image")
axes.scatter(col, row, 10, marker="+", label="centre")
self.get_roi_samples(axes, dcm, col, row)
axes.legend()
img_path = os.path.realpath(
os.path.join(self.report_path, f"{self.img_desc(dcm)}_smoothing.png")
)
fig.savefig(img_path)
self.report_files.append(img_path)
return snr, normalised_snr
def get_largest_circle(self, circles):
"""Determine circle with largest radius from list of detected circles
Args:
circles (_type_): _description_
Returns:
tuple: of centre coordinates (col, row) and radius (float)
"""
largest_col, largest_row, largest_r = 0, 0, 0
for circle in circles:
(col, row), r = cv.minEnclosingCircle(circle)
if r > largest_r:
largest_col, largest_row, largest_r = col, row, r
return largest_col, largest_row, largest_r
def snr_by_subtraction(
self, dcm1: pydicom.Dataset, dcm2: pydicom.Dataset, measured_slice_width=None
):
"""Calculate signal to noise ratio by smoothing
Args:
dcm1 (pydicom.Dataset): DICOM image object for signal
dcm2 (pydicom.Dataset): DICOM image object for noise calculation
measured_slice_width (float or None): slice width from user input
Returns:
tuple of float: SNR and normalised SNR values
"""
col, row = self.get_object_centre(dcm1)
difference = np.subtract(
dcm1.pixel_array.astype("int"), dcm2.pixel_array.astype("int")
)
signal = [
np.mean(roi)
for roi in self.get_roi_samples(
ax=None, dcm=dcm1, centre_col=col, centre_row=row
)
]
noise = np.divide(
[
np.std(roi, ddof=1)
for roi in self.get_roi_samples(
ax=None, dcm=difference, centre_col=col, centre_row=row
)
],
np.sqrt(2),
)
snr = np.mean(np.divide(signal, noise))
normalised_snr = snr * self.get_normalised_snr_factor(
dcm1, measured_slice_width
)
if self.report:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(1, 1)
fig.set_size_inches(5, 5)
fig.tight_layout(pad=1)
axes.set_title("difference image")
axes.imshow(difference, cmap="gray", label="difference image")
axes.scatter(col, row, 10, marker="+", label="centre")
self.get_roi_samples(axes, dcm1, col, row)
axes.legend()
img_path = os.path.realpath(
os.path.join(
self.report_path, f"{self.img_desc(dcm1)}_snr_subtraction.png"
)
)
fig.savefig(img_path)
self.report_files.append(img_path)
return snr, normalised_snr