|
2 | 2 | %%
|
3 | 3 | %clc; clear all; close all;
|
4 | 4 | clear;clc;close all
|
5 |
| -% tic; |
6 |
| -% %location |
7 |
| -% |
8 |
| -% path_train='train.txt'; |
9 |
| -% train_label = repmat(1,1,676) |
10 |
| -% test_label = repmat(1,1,676) |
11 |
| -% train_data = load(path_train); |
12 |
| -% [data_row,data_clown]=size(train_data); |
13 |
| -% |
14 |
| -% |
15 |
| -% %s1 = struct('train_data_1',train_data_1,'train_label_1',train_label_1,'test_data_1',test_data_1,'test_label_1',test_label_1) |
16 |
| -% |
17 |
| -% |
18 |
| -% |
19 |
| -% %SOM network m*n |
20 |
| -% m=10; |
21 |
| -% n=10; |
22 |
| -% %Neuron som_sum |
23 |
| -% som_sum=m*n; |
24 |
| -% %weight initialize |
25 |
| -% w = rand(som_sum, data_clown); |
26 |
| -% %Initialize learning rate |
27 |
| -% learn0 = 0.6; |
28 |
| -% learn_rate = learn0; |
29 |
| -% %learning para |
30 |
| -% learn_para=100; |
31 |
| -% %Setting iteration |
32 |
| -% iter = 100;%1000 500 |
33 |
| -% %Neuron location |
34 |
| -% [I,J] = ind2sub([m, n], 1:som_sum); |
35 |
| -% %Neighbor Initialize |
36 |
| -% neighbor0 =2; |
37 |
| -% neighbor_redius = neighbor0; |
38 |
| -% %Neighbor parameters |
39 |
| -% neighbor_para = 1000/log(neighbor0); |
40 |
| -% |
41 |
| -% for t=1:iter |
42 |
| -% % Scan all the sample points |
43 |
| -% display(['Iteration: ' num2str(t)]); |
44 |
| -% for j=1:data_row |
45 |
| -% %Getting the winner neuron |
46 |
| -% data_x = train_data(j,:); |
47 |
| -% %Find the winner neuron |
48 |
| -% [win_row, win_som_index]=min(dist(data_x,w')); |
49 |
| -% %Find the winner neuron position |
50 |
| -% [win_som_row,win_som_cloumn] = ind2sub([m, n],win_som_index); |
51 |
| -% win_som=[win_som_row,win_som_cloumn]; |
52 |
| -% %Calculate and update the winner neuron neighbourhood position |
53 |
| -% %distance_som = sum(( ([I( : ), J( : )] - repmat(win_som, som_sum,1)) .^2) ,2); |
54 |
| -% distance_som = exp( sum(( ([I( : ), J( : )] - repmat(win_som, som_sum,1)) .^2) ,2)/(-2*neighbor_redius*neighbor_redius)) ; |
55 |
| -% %Update the weights |
56 |
| -% for i = 1:som_sum |
57 |
| -% % if distance_som(i)<neighbor_redius*neighbor_redius |
58 |
| -% w(i,:) = w(i,:) + learn_rate.*distance_som(i).*( data_x - w(i,:)); |
59 |
| -% end |
60 |
| -% end |
61 |
| -% |
62 |
| -% %Updateing the learning rate |
63 |
| -% learn_rate = learn0 * exp(-t/learn_para); |
64 |
| -% %Update the neighbor radius |
65 |
| -% neighbor_redius = neighbor0*exp(-t/neighbor_para); |
66 |
| -% end |
67 |
| -% |
68 |
| -% |
69 |
| -% |
70 |
| -% %save as som_num |
71 |
| -% som_num=cell(1,size(w,1)); |
72 |
| -% for i=1:size(w,1) |
73 |
| -% som_num{1,i}=[]; |
74 |
| -% end |
75 |
| -% %Every neuron data corresponding number |
76 |
| -% for num=1:data_row |
77 |
| -% [som_row,clown]= min(sum(( (w - repmat(train_data(num,:), som_sum,1)) .^2) ,2)); |
78 |
| -% som_num{1,clown}= [som_num{1,clown},num]; |
79 |
| -% end |
80 |
| -% |
81 |
| -% |
82 |
| -% path1='som_num_1.mat'; |
83 |
| -% save(path1,'som_num'); |
84 |
| -% toc; |
| 5 | +tic; |
| 6 | +%location |
| 7 | + |
| 8 | +path_train='train.txt'; |
| 9 | +train_label = repmat(1,1,676) |
| 10 | +test_label = repmat(1,1,676) |
| 11 | +train_data = load(path_train); |
| 12 | +[data_row,data_clown]=size(train_data); |
| 13 | + |
| 14 | + |
| 15 | +%s1 = struct('train_data_1',train_data_1,'train_label_1',train_label_1,'test_data_1',test_data_1,'test_label_1',test_label_1) |
| 16 | + |
| 17 | + |
| 18 | + |
| 19 | +%SOM network m*n |
| 20 | +m=10; |
| 21 | +n=10; |
| 22 | +%Neuron som_sum |
| 23 | +som_sum=m*n; |
| 24 | +%weight initialize |
| 25 | +w = rand(som_sum, data_clown); |
| 26 | +%Initialize learning rate |
| 27 | +learn0 = 0.6; |
| 28 | +learn_rate = learn0; |
| 29 | +%learning para |
| 30 | +learn_para=100; |
| 31 | +%Setting iteration |
| 32 | +iter = 100;%1000 500 |
| 33 | +%Neuron location |
| 34 | +[I,J] = ind2sub([m, n], 1:som_sum); |
| 35 | +%Neighbor Initialize |
| 36 | +neighbor0 =2; |
| 37 | +neighbor_redius = neighbor0; |
| 38 | +%Neighbor parameters |
| 39 | +neighbor_para = 1000/log(neighbor0); |
| 40 | + |
| 41 | +for t=1:iter |
| 42 | + % Scan all the sample points |
| 43 | + display(['Iteration: ' num2str(t)]); |
| 44 | + for j=1:data_row |
| 45 | + %Getting the winner neuron |
| 46 | + data_x = train_data(j,:); |
| 47 | + %Find the winner neuron |
| 48 | + [win_row, win_som_index]=min(dist(data_x,w')); |
| 49 | + %Find the winner neuron position |
| 50 | + [win_som_row,win_som_cloumn] = ind2sub([m, n],win_som_index); |
| 51 | + win_som=[win_som_row,win_som_cloumn]; |
| 52 | + %Calculate and update the winner neuron neighbourhood position |
| 53 | + %distance_som = sum(( ([I( : ), J( : )] - repmat(win_som, som_sum,1)) .^2) ,2); |
| 54 | + distance_som = exp( sum(( ([I( : ), J( : )] - repmat(win_som, som_sum,1)) .^2) ,2)/(-2*neighbor_redius*neighbor_redius)) ; |
| 55 | + %Update the weights |
| 56 | + for i = 1:som_sum |
| 57 | + % if distance_som(i)<neighbor_redius*neighbor_redius |
| 58 | + w(i,:) = w(i,:) + learn_rate.*distance_som(i).*( data_x - w(i,:)); |
| 59 | + end |
| 60 | + end |
| 61 | + |
| 62 | + %Updateing the learning rate |
| 63 | + learn_rate = learn0 * exp(-t/learn_para); |
| 64 | + %Update the neighbor radius |
| 65 | + neighbor_redius = neighbor0*exp(-t/neighbor_para); |
| 66 | +end |
| 67 | + |
| 68 | + |
| 69 | + |
| 70 | +%save as som_num |
| 71 | +som_num=cell(1,size(w,1)); |
| 72 | +for i=1:size(w,1) |
| 73 | + som_num{1,i}=[]; |
| 74 | +end |
| 75 | +%Every neuron data corresponding number |
| 76 | +for num=1:data_row |
| 77 | + [som_row,clown]= min(sum(( (w - repmat(train_data(num,:), som_sum,1)) .^2) ,2)); |
| 78 | + som_num{1,clown}= [som_num{1,clown},num]; |
| 79 | +end |
| 80 | + |
| 81 | + |
| 82 | +path1='som_num_1.mat'; |
| 83 | +save(path1,'som_num'); |
| 84 | +toc; |
85 | 85 | %%
|
86 | 86 | number1 = load('p_dataset_26/Sample1/img002-00001.mat')
|
87 | 87 | number2 = load('p_dataset_26/Sample2/img003-00001.mat')
|
|
0 commit comments