-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
172 lines (130 loc) · 5.36 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import copy
import json
import linecache
import random
import subprocess
import torch
from torch.utils.data import DataLoader, Dataset
from transformers import DataCollatorForSeq2Seq
class SFTDataset(Dataset):
def __init__(self, tokenizer, prompt_file, instruction_file, split="train") -> None:
super().__init__()
self.tokenizer = tokenizer
self.prompts = []
with open(prompt_file, "r") as f:
for line in f:
prompt = json.loads(line)["attacker_prompt"]
self.prompts.append(prompt)
with open(instruction_file, "r") as f:
instructions = json.load(f)
self.instructions = [x["instruction"].strip() for x in instructions]
random.seed(42)
random.shuffle(self.instructions)
num_vals = int(len(self.instructions) * 0.1)
if split == "train":
self.instructions = self.instructions[num_vals:]
elif split == "val":
self.instructions = self.instructions[:num_vals]
print(len(self.instructions))
def __len__(self):
return len(self.instructions)
def __getitem__(self, index):
prompt = random.choice(self.prompts)
instruction = self.instructions[index]
item = self.encode(prompt, instruction)
return item
def get_labels(self):
return self.labels
def encode(self, prompt, instruction):
example = prompt + " " + instruction
prompt = torch.tensor(
self.tokenizer.encode(prompt), dtype=torch.int64
)
example = self.tokenizer.encode(example)
example.append(self.tokenizer.eos_token_id)
example = torch.tensor(
example, dtype=torch.int64
)
labels = copy.deepcopy(example)
labels[: len(prompt)] = -1
example_mask = example.ge(0)
label_mask = labels.ge(0)
example[~example_mask] = 0
labels[~label_mask] = -100
return {"input_ids": example.tolist(),
"labels": labels.tolist(),
"attention_mask": example_mask.tolist()}
class SafetyDataset(Dataset):
def __init__(self, tokenizer, instruction_file) -> None:
super().__init__()
self.tokenizer = tokenizer
with open(instruction_file, "r") as f:
self.data = json.load(f)
print(len(self.data))
def __len__(self):
return len(self.data)
def __getitem__(self, index):
instruction = self.data[index]["instruction"]
response = self.data[index]["response"]
item = self.encode(instruction, response)
return item
def encode(self, prompt, response):
chat_prompt = self.tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}], tokenize=False)
example = chat_prompt + " " + response
prompt = torch.tensor(
self.tokenizer.encode(prompt), dtype=torch.int64
)
example = self.tokenizer.encode(example)
example.append(self.tokenizer.eos_token_id)
example = torch.tensor(
example, dtype=torch.int64
)
labels = copy.deepcopy(example)
labels[: len(prompt)] = -1
example_mask = example.ge(0)
label_mask = labels.ge(0)
example[~example_mask] = 0
labels[~label_mask] = -100
return {"input_ids": example.tolist(),
"labels": labels.tolist(),
"attention_mask": example_mask.tolist()}
class RedTeamDataset(Dataset):
def __init__(self, jsonl_file) -> None:
super().__init__()
self.file_name = jsonl_file
self.total_size = int(subprocess.check_output(
"wc -l " + jsonl_file, shell=True).split()[0])
def __getitem__(self, index):
line = linecache.getline(self.file_name, index+1)
prompt = json.loads(line)["attacker_prompt"]
return prompt
def __len__(self):
return self.total_size
def get_dataloader(name, tokenizer, prompt_file, sft_file=None, batch_size=16, shuffle=True):
if name == "gfn":
dataset = RedTeamDataset(prompt_file)
def collate_fn(data):
return tokenizer(data, padding=True, truncation=True, return_tensors="pt")
dataloader = DataLoader(dataset, batch_size,
shuffle=shuffle, collate_fn=collate_fn)
return dataloader
elif name == "sft":
tr_dataset = SFTDataset(tokenizer, prompt_file,
sft_file, split="train")
val_dataset = SFTDataset(tokenizer, prompt_file, sft_file, split="val")
tr_dataloader = DataLoader(
tr_dataset, batch_size, shuffle=shuffle, collate_fn=DataCollatorForSeq2Seq(tokenizer))
val_dataloader = DataLoader(
val_dataset, batch_size, shuffle=False, collate_fn=DataCollatorForSeq2Seq(tokenizer))
return tr_dataloader, val_dataloader
elif name == "mle":
tr_dataset = SFTDataset(tokenizer, prompt_file, sft_file, split="full")
tr_dataloader = DataLoader(
tr_dataset, batch_size, shuffle=shuffle, collate_fn=DataCollatorForSeq2Seq(tokenizer))
return tr_dataloader
elif name == "safety-tuning":
tr_dataset = SafetyDataset(tokenizer, prompt_file)
tr_dataloader = DataLoader(
tr_dataset, batch_size, shuffle=shuffle, collate_fn=DataCollatorForSeq2Seq(tokenizer))
return tr_dataloader