This repository has been archived by the owner on Nov 3, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
main.py
208 lines (164 loc) · 7.61 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import numpy as np
import cv2
from PIL import Image
import urllib.parse
import urllib.request
import io
from math import log, exp, tan, atan, pi, ceil
from place_lookup import find_coordinates
EARTH_RADIUS = 6378137
EQUATOR_CIRCUMFERENCE = 2 * pi * EARTH_RADIUS
INITIAL_RESOLUTION = EQUATOR_CIRCUMFERENCE / 256.0
ORIGIN_SHIFT = EQUATOR_CIRCUMFERENCE / 2.0
def latlontopixels(lat, lon, zoom):
mx = (lon * ORIGIN_SHIFT) / 180.0
my = log(tan((90 + lat) * pi / 360.0)) / (pi / 180.0)
my = (my * ORIGIN_SHIFT) / 180.0
res = INITIAL_RESOLUTION / (2 ** zoom)
px = (mx + ORIGIN_SHIFT) / res
py = (my + ORIGIN_SHIFT) / res
return px, py
def pixelstolatlon(px, py, zoom):
res = INITIAL_RESOLUTION / (2 ** zoom)
mx = px * res - ORIGIN_SHIFT
my = py * res - ORIGIN_SHIFT
lat = (my / ORIGIN_SHIFT) * 180.0
lat = 180 / pi * (2 * atan(exp(lat * pi / 180.0)) - pi / 2.0)
lon = (mx / ORIGIN_SHIFT) * 180.0
return lat, lon
def calculate_area(res):
"""
Args:
Takes the transformed image as input
Returns:
:tot_area_acre_land: empty area in acres.
:trees: rounded number of trees in the possible area.
"""
# print(res.shape) # (640, 622, 3)
# print(np.count_nonzero(res)) # 679089
# print("number of pixels", res.size//3)
tot_pixels = res.size//3
# print("number of pixels: row x col", res.)
no_of_non_zero_pixels_rgb = np.count_nonzero(res)
row, col, channels = res.shape # 152886
# print("percentage of free land : ", (no_of_non_zero_pixels_rgb/(row*col*channels))) # 0.5686369573954984
percentage_of_land = no_of_non_zero_pixels_rgb/(row*col*channels)
# https://www.unitconverters.net/typography/centimeter-to-pixel-x.htm
# says 1 cm = 37.795275591 pixels
cm_2_pixel = 37.795275591
# print("row in cm ", row/cm_2_pixel)
# print("col in cm ", col/cm_2_pixel)
row_cm = row/cm_2_pixel
col_cm = col/cm_2_pixel
tot_area_cm = tot_pixels/(row_cm*col_cm)
tot_area_cm_land = tot_area_cm*percentage_of_land
# print("Total area in cm^2 : ", tot_area_cm_land)
# in google maps 2.2cm = 50m => 1cm = 22.727272727272727 m in real life at zoom 18
# 1cm^2 = (22.727272727272727m)^2 = 516.5289256198347 m^2
# print("Total area in m^2 : ", tot_area_cm_land*(516.5289256198347))
tot_area_m_actual_land = tot_area_cm_land*(516.5289256198347)
# 1 m^2 = 0.000247105 acres :: source Google
tot_area_acre_land = tot_area_m_actual_land*0.000247105
# print("Total area in acres : ", tot_area_acre_land)
# https://www.treeplantation.com/tree-spacing-calculator.html
# says if you have 2 ft between rows, and 2ft between trees will can take 10890 trees per acre.
number_of_trees = tot_area_acre_land*10890
# print(f"{round(number_of_trees)} number of trees can be planted in {tot_area_acre_land} acres.")
return tot_area_acre_land, round(number_of_trees)
def air_pollution_core(ullat, ullon, lrlat, lrlon, results):
zoom = 18
scale = 1
maxsize = 640
ulx, uly = latlontopixels(ullat, ullon, zoom)
lrx, lry = latlontopixels(lrlat, lrlon, zoom)
dx, dy = lrx - ulx, uly - lry
cols, rows = int(ceil(dx / maxsize)), int(ceil(dy / maxsize))
bottom = 120
largura = int(ceil(dx / cols))
altura = int(ceil(dy / rows))
alturaplus = altura + bottom
final = Image.new("RGB", (int(dx), int(dy)))
total_acres_place, total_trees = 0. ,0.
total_tile_results = dict()
for x in range(cols):
for y in range(rows):
dxn = largura * (0.5 + x)
dyn = altura * (0.5 + y)
latn, lonn = pixelstolatlon(ulx + dxn, uly - dyn - bottom / 2, zoom)
position = ','.join((str(latn), str(lonn)))
# print(x, y, position)
urlparams = urllib.parse.urlencode({'center': position,
'zoom': str(zoom),
'size': '%dx%d' % (largura, alturaplus),
'maptype': 'satellite',
'sensor': 'false',
'scale': scale,
'key': 'YOUR_API_HERE'})
url = 'http://maps.google.com/maps/api/staticmap?' + urlparams
f = urllib.request.urlopen(url)
image = io.BytesIO(f.read())
im = Image.open(image)
im.save("map_{}_{}_{}.png".format(x, y, position))
img = cv2.imread("map_{}_{}_{}.png".format(x, y, position))
shifted = cv2.pyrMeanShiftFiltering(img,7,30)
gray = cv2.cvtColor(shifted, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 0, 255,cv2.THRESH_BINARY | cv2.THRESH_OTSU)
hsv = cv2.cvtColor(shifted,cv2.COLOR_BGR2HSV)
lower_trees = np.array([10,0,10])
higher_trees = np.array([180,180,75])
lower_houses = np.array([90,10,100])
higher_houses = np.array([255,255,255])
lower_roads = np.array([90,10,100])
higher_roads = np.array([100,100,100])
lower_feilds = np.array([0,20,100])
higher_feilds = np.array([50,255,255])
lower_feilds_blue = np.array([0,80,100])
higher_feilds_blue = np.array([255,250,255])
masktree = cv2.inRange(hsv,lower_trees,higher_trees)
maskhouses = cv2.inRange(hsv,lower_houses,higher_houses)
maskroads = cv2.inRange(hsv,lower_roads,higher_roads)
maskfeilds_houses = cv2.inRange(hsv,lower_feilds,higher_feilds)
blue_limiter = cv2.inRange(hsv,lower_feilds_blue,higher_feilds_blue)
maskfeilds = maskfeilds_houses
res = cv2.bitwise_and(img,img,mask=maskfeilds)
area_in_acres, number_of_trees = calculate_area(res)
total_acres_place +=area_in_acres
total_trees += number_of_trees
# print(f"area: {area_in_acres}, no of trees: {number_of_trees}")
tile_results = {
"name_of_tile_image": "map_{}_{}_{}.png".format(x, y, position),
"area_acres": area_in_acres,
"number_of_trees": number_of_trees
}
# print(tile_results)
total_tile_results["{}_{}_{}".format(x, y, position)] = tile_results
# uncomment below for viewing the output images
# cv2.imshow('res',res)
# cv2.imshow('img', img)
# cv2.waitKey(delay=2000)
# cv2.destroyAllWindows()
# print(total_tile_results)
results["total_tile_results"] = total_tile_results
results["total_acres_of_land"] = total_acres_place
results["total_number_of_trees"] = total_trees
return results
def location_based_estimation(place):
"""
:place: is a string that expects a name of a place
"""
results = find_coordinates(place)
ullat, ullon = results['upper_left']
lrlat, lrlon = results['lower_right']
returning_json = air_pollution_core(ullat, ullon, lrlat, lrlon, results)
return returning_json
def coordinates_based_estimation(ullat, ullon, lrlat, lrlon):
"""
:upperleft: a string expecting upperleft coordinates of the tile you are expecting. ex : '12.92,79.11'
:lowerright: a string expecting lowerright coordinates of the tile you are expecting. ex :'12.91,79.13'
"""
# print(f"{upperleft.replace('\"','')}")
# ullat, ullon = map(float, upperleft.split(','))
# lrlat, lrlon = map(float, lowerright.split(','))
results = dict()
returning_json = air_pollution_core(ullat, ullon, lrlat, lrlon, results)
return returning_json