forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark_train.sh
294 lines (271 loc) · 10.4 KB
/
benchmark_train.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
#!/bin/bash
source test_tipc/common_func.sh
# run benchmark sh
# Usage:
# bash run_benchmark_train.sh config.txt params
# or
# bash run_benchmark_train.sh config.txt
function func_parser_params(){
strs=$1
IFS="="
array=(${strs})
tmp=${array[1]}
echo ${tmp}
}
function set_dynamic_epoch(){
string=$1
num=$2
_str=${string:1:6}
IFS="C"
arr=(${_str})
M=${arr[0]}
P=${arr[1]}
ep=`expr $num \* $M \* $P`
echo $ep
}
function func_sed_params(){
filename=$1
line=$2
param_value=$3
params=`sed -n "${line}p" $filename`
IFS=":"
array=(${params})
key=${array[0]}
value=${array[1]}
new_params="${key}:${param_value}"
IFS=";"
cmd="sed -i '${line}s/.*/${new_params}/' '${filename}'"
eval $cmd
}
function set_gpu_id(){
string=$1
_str=${string:1:6}
IFS="C"
arr=(${_str})
M=${arr[0]}
P=${arr[1]}
gn=`expr $P - 1`
gpu_num=`expr $gn / $M`
seq=`seq -s "," 0 $gpu_num`
echo $seq
}
function get_repo_name(){
IFS=";"
cur_dir=$(pwd)
IFS="/"
arr=(${cur_dir})
echo ${arr[-1]}
}
FILENAME=$1
# copy FILENAME as new
new_filename="./test_tipc/benchmark_train.txt"
cmd=`yes|cp $FILENAME $new_filename`
FILENAME=$new_filename
# MODE must be one of ['benchmark_train']
MODE=$2
PARAMS=$3
to_static=""
# parse "to_static" options and modify trainer into "to_static_trainer"
if [[ $PARAMS =~ "dynamicTostatic" ]] ;then
to_static="d2sT_"
sed -i 's/trainer:norm_train/trainer:to_static_train/g' $FILENAME
# clear PARAM contents
if [ $PARAMS = "to_static" ] ;then
PARAMS=""
fi
fi
# bash test_tipc/benchmark_train.sh test_tipc/configs/det_mv3_db_v2_0/train_benchmark.txt benchmark_train dynamic_bs8_fp32_DP_N1C8
# bash test_tipc/benchmark_train.sh test_tipc/configs/det_mv3_db_v2_0/train_benchmark.txt benchmark_train dynamicTostatic_bs8_fp32_DP_N1C8
# bash test_tipc/benchmark_train.sh test_tipc/configs/det_mv3_db_v2_0/train_benchmark.txt benchmark_train dynamic_bs8_null_DP_N1C1
IFS=$'\n'
# parser params from train_benchmark.txt
dataline=`cat $FILENAME`
# parser params
IFS=$'\n'
lines=(${dataline})
model_name=$(func_parser_value "${lines[1]}")
python_name=$(func_parser_value "${lines[2]}")
# set env
python=python
export str_tmp=$(echo `pip list|grep paddlepaddle-gpu|awk -F ' ' '{print $2}'`)
export frame_version=${str_tmp%%.post*}
export frame_commit=$(echo `${python} -c "import paddle;print(paddle.version.commit)"`)
# 获取benchmark_params所在的行数
line_num=`grep -n -w "train_benchmark_params" $FILENAME | cut -d ":" -f 1`
# for train log parser
batch_size=$(func_parser_value "${lines[line_num]}")
line_num=`expr $line_num + 1`
fp_items=$(func_parser_value "${lines[line_num]}")
line_num=`expr $line_num + 1`
epoch=$(func_parser_value "${lines[line_num]}")
line_num=`expr $line_num + 1`
profile_option_key=$(func_parser_key "${lines[line_num]}")
profile_option_params=$(func_parser_value "${lines[line_num]}")
profile_option="${profile_option_key}:${profile_option_params}"
line_num=`expr $line_num + 1`
flags_value=$(func_parser_value "${lines[line_num]}")
# set flags
IFS=";"
flags_list=(${flags_value})
for _flag in ${flags_list[*]}; do
cmd="export ${_flag}"
eval $cmd
done
# set log_name
repo_name=$(get_repo_name )
SAVE_LOG=${BENCHMARK_LOG_DIR:-$(pwd)} # */benchmark_log
mkdir -p "${SAVE_LOG}/benchmark_log/"
status_log="${SAVE_LOG}/benchmark_log/results.log"
# get benchmark profiling params : PROFILING_TIMER_ONLY=no|True|False
PROFILING_TIMER_ONLY=${PROFILING_TIMER_ONLY:-"True"}
# The number of lines in which train params can be replaced.
line_python=3
line_gpuid=4
line_precision=6
line_epoch=7
line_batchsize=9
line_profile=13
line_eval_py=24
line_export_py=30
func_sed_params "$FILENAME" "${line_eval_py}" "null"
func_sed_params "$FILENAME" "${line_export_py}" "null"
func_sed_params "$FILENAME" "${line_python}" "$python"
# if params
if [ ! -n "$PARAMS" ] ;then
# PARAMS input is not a word.
IFS="|"
batch_size_list=(${batch_size})
fp_items_list=(${fp_items})
device_num_list=(N1C4)
run_mode="DP"
elif [[ ${PARAMS} = "dynamicTostatic" ]];then
IFS="|"
model_type=$PARAMS
batch_size_list=(${batch_size})
fp_items_list=(${fp_items})
device_num_list=(N1C4)
run_mode="DP"
else
# parser params from input: modeltype_bs${bs_item}_${fp_item}_${run_mode}_${device_num}
IFS="_"
params_list=(${PARAMS})
model_type=${params_list[0]}
batch_size=${params_list[1]}
batch_size=`echo ${batch_size} | tr -cd "[0-9]" `
precision=${params_list[2]}
run_mode=${params_list[3]}
device_num=${params_list[4]}
IFS=";"
if [ ${precision} = "fp16" ];then
precision="amp"
fi
epoch=$(set_dynamic_epoch $device_num $epoch)
fp_items_list=($precision)
batch_size_list=($batch_size)
device_num_list=($device_num)
fi
IFS="|"
for batch_size in ${batch_size_list[*]}; do
for train_precision in ${fp_items_list[*]}; do
for device_num in ${device_num_list[*]}; do
# sed batchsize and precision
if [ ${train_precision} = "amp" ];then
precision="fp16"
else
precision="fp32"
fi
func_sed_params "$FILENAME" "${line_precision}" "$train_precision"
func_sed_params "$FILENAME" "${line_batchsize}" "$MODE=$batch_size"
func_sed_params "$FILENAME" "${line_epoch}" "$MODE=$epoch"
gpu_id=$(set_gpu_id $device_num)
if [ ${#gpu_id} -le 1 ];then
func_sed_params "$FILENAME" "${line_gpuid}" "0" # sed used gpu_id
if [[ ${PROFILING_TIMER_ONLY} != "no" ]];then
echo "run profile"
# The default value of profile_option's timer_only parameter is True
if [[ ${PROFILING_TIMER_ONLY} = "False" ]];then
profile_option="${profile_option};timer_only=False"
fi
log_path="$SAVE_LOG/profiling_log"
mkdir -p $log_path
log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}profiling"
# set profile_option params
tmp=`sed -i "${line_profile}s/.*/\"${profile_option}\"/" "${FILENAME}"`
# run test_train_inference_python.sh
cmd="timeout 5m bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
echo $cmd
eval ${cmd}
eval "cat ${log_path}/${log_name}"
fi
echo "run without profile"
# without profile
log_path="$SAVE_LOG/train_log"
speed_log_path="$SAVE_LOG/index"
mkdir -p $log_path
mkdir -p $speed_log_path
log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}log"
speed_log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}speed"
func_sed_params "$FILENAME" "${line_profile}" "null" # sed profile_id as null
cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
echo $cmd
job_bt=`date '+%Y%m%d%H%M%S'`
eval $cmd
job_et=`date '+%Y%m%d%H%M%S'`
export model_run_time=$((${job_et}-${job_bt}))
eval "cat ${log_path}/${log_name}"
# parser log
_model_name="${model_name}_bs${batch_size}_${precision}_${run_mode}"
cmd="${python} ${BENCHMARK_ROOT}/scripts/analysis.py --filename ${log_path}/${log_name} \
--speed_log_file '${speed_log_path}/${speed_log_name}' \
--model_name ${_model_name} \
--base_batch_size ${batch_size} \
--run_mode ${run_mode} \
--fp_item ${precision} \
--keyword ips: \
--skip_steps 2 \
--device_num ${device_num} \
--speed_unit samples/s \
--convergence_key loss: "
echo $cmd
eval $cmd
last_status=${PIPESTATUS[0]}
status_check $last_status "${cmd}" "${status_log}"
else
IFS=";"
unset_env=`unset CUDA_VISIBLE_DEVICES`
log_path="$SAVE_LOG/train_log"
speed_log_path="$SAVE_LOG/index"
mkdir -p $log_path
mkdir -p $speed_log_path
log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}log"
speed_log_name="${repo_name}_${model_name}_bs${batch_size}_${precision}_${run_mode}_${device_num}_${to_static}speed"
func_sed_params "$FILENAME" "${line_gpuid}" "$gpu_id" # sed used gpu_id
func_sed_params "$FILENAME" "${line_profile}" "null" # sed --profile_option as null
cmd="bash test_tipc/test_train_inference_python.sh ${FILENAME} benchmark_train > ${log_path}/${log_name} 2>&1 "
echo $cmd
job_bt=`date '+%Y%m%d%H%M%S'`
eval $cmd
job_et=`date '+%Y%m%d%H%M%S'`
export model_run_time=$((${job_et}-${job_bt}))
eval "cat ${log_path}/${log_name}"
# parser log
_model_name="${model_name}_bs${batch_size}_${precision}_${run_mode}"
cmd="${python} ${BENCHMARK_ROOT}/scripts/analysis.py --filename ${log_path}/${log_name} \
--speed_log_file '${speed_log_path}/${speed_log_name}' \
--model_name ${_model_name} \
--base_batch_size ${batch_size} \
--run_mode ${run_mode} \
--fp_item ${precision} \
--keyword ips: \
--skip_steps 2 \
--device_num ${device_num} \
--speed_unit images/s \
--convergence_key loss: "
echo $cmd
eval $cmd
last_status=${PIPESTATUS[0]}
status_check $last_status "${cmd}" "${status_log}"
fi
done
done
done