-
Notifications
You must be signed in to change notification settings - Fork 1
/
models.py
94 lines (67 loc) · 3.6 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
## TODO: define the convolutional neural network architecture
import torch
import torch.nn as nn
import torch.nn.functional as F
# can use the below import should you choose to initialize the weights of your Net
import torch.nn.init as I
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
## TODO: Define all the layers of this CNN, the only requirements are:
## 1. This network takes in a square (same width and height), grayscale image as input
## 2. It ends with a linear layer that represents the keypoints
## it's suggested that you make this last layer output 136 values, 2 for each of the 68 keypoint (x, y) pairs
# As an example, you've been given a convolutional layer, which you may (but don't have to) change:
# 1 input image channel (grayscale), 32 output channels/feature maps, 3x3 square convolution kernel
# Input 224X224
self.conv1 = nn.Conv2d(1, 32, 5) # Convolutional layer 1
# Output size = (Width-FKernel)/Stride +1 = (32, 220, 220)
self.pool1 = nn.MaxPool2d(2, 2)
# Layes output = (32, 110, 110)
self.conv2 = nn.Conv2d(32, 64, 3) # Convolutional layer 2
self.conv2_bn = nn.BatchNorm2d(64)
# Output size = (Width-FKernel)/Stride +1 = (64, 108, 108)
self.pool2 = nn.MaxPool2d(2, 2)
# Layes output = (64, 54, 54)
self.conv3 = nn.Conv2d(64, 128, 3) # Convolutional layer 3
self.conv3_bn = nn.BatchNorm2d(128)
# Output size = (Width-FKernel)/Stride +1 = (128, 52, 52)
self.pool3 = nn.MaxPool2d(2, 2)
# Layes output = (128, 26, 26)
self.conv4 = nn.Conv2d(128, 256, 3) # Convolutional layer 4
self.conv4_bn = nn.BatchNorm2d(256)
# Output size = (Width-FKernel)/Stride +1 = (256, 24, 24)
self.pool4 = nn.MaxPool2d(2, 2)
# Layes output = (256, 12, 12)
self.conv5 = nn.Conv2d(256, 512, 3) # Convolutional layer 4
self.conv5_bn = nn.BatchNorm2d(512)
# Output size = (Width-FKernel)/Stride +1 = (256, 10, 10)
self.pool5 = nn.MaxPool2d(2, 2)
# Layes output = (512, 5, 5)
self.fc6 = nn.Linear(512*5*5, 1024) # Dense layer 1
self.drop6 = nn.Dropout(p=0.2, inplace=True)
self.fc7 = nn.Linear(1024, 512) # Dense layer 2
self.drop7 = nn.Dropout(p=0.2, inplace=True)
self.fc8 = nn.Linear(512, 136) # Dense layer output
## Note that among the layers to add, consider including:
# maxpooling layers, multiple conv layers, fully-connected layers,
# and other layers (such as dropout or batch normalization) to avoid overfitting
def forward(self, x):
## TODO: Define the feedforward behavior of this model
## x is the input image and, as an example, here you may choose to include a pool/conv step:
## x = self.pool(F.relu(self.conv1(x)))
x = self.pool1(F.relu(self.conv1(x)))
x = self.pool2(F.relu(self.conv2_bn(self.conv2(x))))
#x = self.pool2(F.relu(self.conv2(x)))
x = self.pool3(F.relu(self.conv3_bn(self.conv3(x))))
#x = self.pool3(F.relu(self.conv3(x)))
x = self.pool4(F.relu(self.conv4_bn(self.conv4(x))))
#x = self.pool4(F.relu(self.conv4(x)))
x = self.pool5(F.relu(self.conv5_bn(self.conv5(x))))
#x = self.pool5(F.relu(self.conv5(x)))
x = x.view(x.size(0), -1) #reshape
x = self.drop6(F.relu(self.fc6(x)))
x = self.drop7(F.relu(self.fc7(x)))
x = self.fc8(x)
# a modified x, having gone through all the layers of your model, should be returned
return x