Build Neural Networks Visually β Export Production Code
Design deep learning architectures with drag-and-drop. Export clean PyTorch or TensorFlow code instantly.
VisionForge is a visual neural network builder that lets you design complex deep learning architectures without writing code. Perfect for researchers, students, and ML engineers who want to rapidly prototype models.
- π¨ Drag-and-drop interface β Build CNNs, LSTMs, ResNets visually
- β‘ Automatic shape inference β No manual tensor dimension tracking
- π Multi-framework export β PyTorch or TensorFlow with one click
- π€ AI-powered assistant β Ask questions or modify your model with natural language
- β Real-time validation β Catch architecture errors before export
- Python 3.8+
- Node.js 16+
- Google Gemini API key (for AI assistant)
1. Clone and setup backend
git clone https://github.com/devgunnu/visionforge.git
cd visionforge/project
# Install Python dependencies
pip install -r requirements.txt
# Setup environment
cp .env.example .env
# Add your GEMINI_API_KEY to .env
# Initialize database
python manage.py migrate
# Start Django server
python manage.py runserverBackend runs at http://localhost:8000
2. Setup frontend
cd project/frontend
# Install dependencies
npm install
# Start dev server
npm run devFrontend runs at http://localhost:5173
3. Open your browser
Navigate to http://localhost:5173 and start building!
βββββββββββββββ ββββββββββββββββ ββββββββββββββββ βββββββββββββββ
β Drag & Drop β β β Configure β β β Validate β β β Export β
β Blocks β β Parameters β β Architecture β β Code β
βββββββββββββββ ββββββββββββββββ ββββββββββββββββ βββββββββββββββ
- Add layers from the sidebar (Conv2D, LSTM, Dropout, etc.)
- Connect blocks to define your model's data flow
- Set parameters by clicking on any block
- Validate your architecture with built-in checks
- Export production-ready code for PyTorch or TensorFlow
|
Core Layers
Activation & Regularization
|
Pooling
Recurrent & Sequence
Operations
|
Simple CNN Classifier
Input β Conv2D β ReLU β MaxPool2D β Flatten β Linear β Softmax β Loss
ResNet-style Skip Connection
Input β Conv2D β BatchNorm β ReLU β
ββ Add β ReLU β Output
Input ββββββββββββββββββββββ
LSTM Sequence Model
Input β Embedding β LSTM β Dropout β Linear β Output β Loss
| Frontend | React 19 β’ TypeScript β’ Vite β’ Tailwind CSS |
| Canvas | ReactFlow β’ Zustand β’ Framer Motion |
| Backend | Django β’ Python β’ SQLite |
| AI | Google Gemini API |
| UI | Radix UI β’ shadcn/ui |
| Shortcut | Action |
|---|---|
Ctrl+Z |
Undo |
Ctrl+Y |
Redo |
Delete |
Remove selected block |
Backend not starting?
cd project
python manage.py migrate
python manage.py runserverFrontend build errors?
cd project/frontend
rm -rf node_modules package-lock.json
npm install
npm run devCORS issues? Make sure both servers are running (Django on 8000, Vite on 5173)
Contributions are welcome! Feel free to open issues or submit PRs.
- Fork the repository
- Create your feature branch (
git checkout -b feature/amazing-feature) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Open a Pull Request
Please check the LICENSE file.