Skip to content

Visual neural network builder with drag-and-drop interface. Export production-ready PyTorch/TensorFlow code with automatic shape inference and AI-powered assistance.

License

Notifications You must be signed in to change notification settings

ForgeOpus/visionforge

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
VisionForge Logo

VisionForge

Build Neural Networks Visually β€” Export Production Code

Design deep learning architectures with drag-and-drop. Export clean PyTorch or TensorFlow code instantly.

MIT License Python React


✨ What is VisionForge?

VisionForge is a visual neural network builder that lets you design complex deep learning architectures without writing code. Perfect for researchers, students, and ML engineers who want to rapidly prototype models.

  • 🎨 Drag-and-drop interface β€” Build CNNs, LSTMs, ResNets visually
  • ⚑ Automatic shape inference β€” No manual tensor dimension tracking
  • πŸ”„ Multi-framework export β€” PyTorch or TensorFlow with one click
  • πŸ€– AI-powered assistant β€” Ask questions or modify your model with natural language
  • βœ… Real-time validation β€” Catch architecture errors before export

πŸš€ Quick Start

Prerequisites

Installation

1. Clone and setup backend

git clone https://github.com/devgunnu/visionforge.git
cd visionforge/project

# Install Python dependencies
pip install -r requirements.txt

# Setup environment
cp .env.example .env
# Add your GEMINI_API_KEY to .env

# Initialize database
python manage.py migrate

# Start Django server
python manage.py runserver

Backend runs at http://localhost:8000

2. Setup frontend

cd project/frontend

# Install dependencies
npm install

# Start dev server
npm run dev

Frontend runs at http://localhost:5173

3. Open your browser Navigate to http://localhost:5173 and start building!


🎯 How It Works

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚  Drag & Drop β”‚ β†’  β”‚  Configure   β”‚ β†’  β”‚   Validate   β”‚ β†’  β”‚   Export    β”‚
β”‚    Blocks    β”‚    β”‚  Parameters  β”‚    β”‚ Architecture β”‚    β”‚    Code     β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
  1. Add layers from the sidebar (Conv2D, LSTM, Dropout, etc.)
  2. Connect blocks to define your model's data flow
  3. Set parameters by clicking on any block
  4. Validate your architecture with built-in checks
  5. Export production-ready code for PyTorch or TensorFlow

πŸ“¦ Available Layers

Core Layers

  • Input / Output
  • Linear (Fully Connected)
  • Conv1D / Conv2D / Conv3D
  • Flatten, Reshape

Activation & Regularization

  • ReLU, Sigmoid, Tanh, Softmax
  • Dropout, BatchNorm
  • Layer Normalization

Pooling

  • MaxPool2D, AvgPool2D
  • AdaptiveAvgPool2D

Recurrent & Sequence

  • LSTM, GRU
  • Embedding

Operations

  • Add, Concatenate
  • Custom layers

πŸ’‘ Example Architectures

Simple CNN Classifier

Input β†’ Conv2D β†’ ReLU β†’ MaxPool2D β†’ Flatten β†’ Linear β†’ Softmax β†’ Loss

ResNet-style Skip Connection

Input β†’ Conv2D β†’ BatchNorm β†’ ReLU ┐
                                   β”œβ†’ Add β†’ ReLU β†’ Output
       Input β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β†’β”˜

LSTM Sequence Model

Input β†’ Embedding β†’ LSTM β†’ Dropout β†’ Linear β†’ Output β†’ Loss

πŸ› οΈ Tech Stack

Frontend React 19 β€’ TypeScript β€’ Vite β€’ Tailwind CSS
Canvas ReactFlow β€’ Zustand β€’ Framer Motion
Backend Django β€’ Python β€’ SQLite
AI Google Gemini API
UI Radix UI β€’ shadcn/ui

⌨️ Keyboard Shortcuts

Shortcut Action
Ctrl+Z Undo
Ctrl+Y Redo
Delete Remove selected block

πŸ“– Documentation


πŸ› Troubleshooting

Backend not starting?

cd project
python manage.py migrate
python manage.py runserver

Frontend build errors?

cd project/frontend
rm -rf node_modules package-lock.json
npm install
npm run dev

CORS issues? Make sure both servers are running (Django on 8000, Vite on 5173)


🀝 Contributing

Contributions are welcome! Feel free to open issues or submit PRs.

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to the branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

πŸ“„ License

Please check the LICENSE file.



Ready to build AI models faster?

Get Started β€’ View Docs β€’ Report Issues

Made by devgunnu

About

Visual neural network builder with drag-and-drop interface. Export production-ready PyTorch/TensorFlow code with automatic shape inference and AI-powered assistance.

Topics

Resources

License

Code of conduct

Contributing

Security policy

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 6