forked from PointCloudLibrary/pcl
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompute_hausdorff.cpp
161 lines (138 loc) · 5.02 KB
/
compute_hausdorff.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2009-2012, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
* Copyright (c) 2014, RadiantBlue Technologies, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*/
#include <pcl/point_types.h>
#include <pcl/io/pcd_io.h>
#include <pcl/console/print.h>
#include <pcl/console/parse.h>
#include <pcl/console/time.h>
#include <pcl/search/kdtree.h>
using namespace std;
using namespace pcl;
using namespace pcl::io;
using namespace pcl::console;
using namespace pcl::search;
typedef PointXYZ PointType;
typedef PointCloud<PointXYZ> Cloud;
void
printHelp (int, char **argv)
{
print_error ("Syntax is: %s cloud_a.pcd cloud_b.pcd\n", argv[0]);
}
bool
loadCloud (const std::string &filename, Cloud &cloud)
{
TicToc tt;
print_highlight ("Loading "); print_value ("%s ", filename.c_str ());
tt.tic ();
if (loadPCDFile (filename, cloud) < 0)
return (false);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : "); print_value ("%d", cloud.width * cloud.height); print_info (" points]\n");
print_info ("Available dimensions: "); print_value ("%s\n", pcl::getFieldsList (cloud).c_str ());
return (true);
}
void
compute (Cloud &cloud_a, Cloud &cloud_b)
{
// Estimate
TicToc tt;
tt.tic ();
print_highlight (stderr, "Computing ");
// compare A to B
pcl::search::KdTree<PointType> tree_b;
tree_b.setInputCloud (cloud_b.makeShared ());
float max_dist_a = -std::numeric_limits<float>::max ();
for (size_t i = 0; i < cloud_a.points.size (); ++i)
{
std::vector<int> indices (1);
std::vector<float> sqr_distances (1);
tree_b.nearestKSearch (cloud_a.points[i], 1, indices, sqr_distances);
if (sqr_distances[0] > max_dist_a)
max_dist_a = sqr_distances[0];
}
// compare B to A
pcl::search::KdTree<PointType> tree_a;
tree_a.setInputCloud (cloud_a.makeShared ());
float max_dist_b = -std::numeric_limits<float>::max ();
for (size_t i = 0; i < cloud_b.points.size (); ++i)
{
std::vector<int> indices (1);
std::vector<float> sqr_distances (1);
tree_a.nearestKSearch (cloud_b.points[i], 1, indices, sqr_distances);
if (sqr_distances[0] > max_dist_b)
max_dist_b = sqr_distances[0];
}
max_dist_a = std::sqrt (max_dist_a);
max_dist_b = std::sqrt (max_dist_b);
float dist = std::max (max_dist_a, max_dist_b);
print_info ("[done, "); print_value ("%g", tt.toc ()); print_info (" ms : ");
print_info ("A->B: "); print_value ("%f", max_dist_a);
print_info (", B->A: "); print_value ("%f", max_dist_b);
print_info (", Hausdorff Distance: "); print_value ("%f", dist);
print_info (" ]\n");
}
/* ---[ */
int
main (int argc, char** argv)
{
print_info ("Compute Hausdorff distance between point clouds. For more information, use: %s -h\n", argv[0]);
if (argc < 3)
{
printHelp (argc, argv);
return (-1);
}
// Parse the command line arguments for .pcd files
std::vector<int> p_file_indices;
p_file_indices = parse_file_extension_argument (argc, argv, ".pcd");
if (p_file_indices.size () != 2)
{
print_error ("Need two PCD files to compute Hausdorff distance.\n");
return (-1);
}
// Load the first file
Cloud::Ptr cloud_a (new Cloud);
if (!loadCloud (argv[p_file_indices[0]], *cloud_a))
return (-1);
// Load the second file
Cloud::Ptr cloud_b (new Cloud);
if (!loadCloud (argv[p_file_indices[1]], *cloud_b))
return (-1);
// Compute the Hausdorff distance
compute (*cloud_a, *cloud_b);
}