-
-
Notifications
You must be signed in to change notification settings - Fork 213
/
broadcast.jl
371 lines (311 loc) · 14.4 KB
/
broadcast.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
# .-'''-. _..._
# ' _ \ _______ .-'_..._''.
# /| / /` '. \ \ ___ `'. .' .' '.\
# || . | \ ' ' |--.\ \ / .'
# || .-,.--. | ' | ' | | \ ' . ' .|
# || __ | .-. |\ \ / / __ | | | '| | __ .' |_
# ||/'__ '. | | | | `. ` ..' /.:--.'. | | | || | .:--.'. _ .' |
# |:/` '. '| | | | '-...-'`/ | \ | | | ' .'. ' / | \ | .' |'--. .-'
# || | || | '- `" __ | | | |___.' /' \ '. .`" __ | | . | / | |
# ||\ / '| | .'.''| | /_______.'/ '. `._____.-'/ .'.''| | .'.'| |// | |
# |/\'..' / | | / / | |_\_______|/ `-.______ / / / | |_.'.'.-' / | '.'
# ' `'-'` |_| \ \._,\ '/ ` \ \._,\ '/.' \_.' | /
# `--' `" `--' `" `'-'
using Base.Broadcast
using Base.Broadcast: Broadcasted, AbstractArrayStyle, broadcasted, materialize
# There's a saying that debugging code is about twice as hard as writing it in
# the first place. So if you're as clever as you can be when writing code, how
# will you ever debug it?
# AD faces a similar dilemma: if you write code that's as clever as the compiler
# can handle, how will you ever differentiate it? Differentiating makes clever
# code that bit more complex and the compiler gives up, usually resulting in
# 100x worse performance.
# Base's broadcasting is very cleverly written, and this makes differentiating
# it... somewhat tricky.
# Utilities
# =========
# ChainRules already marks this non-differentiable,
# But inference can still give up because of the Zygote -> CR wrapper layer
@nograd Broadcast.combine_styles
accum_sum(xs; dims = :) = reduce(accum, xs, dims = dims)
# Work around reducedim_init issue
# https://github.com/JuliaLang/julia/issues/31427
accum_sum(xs::Nothing; dims = :) = nothing
accum_sum(xs::AbstractArray{Nothing}; dims = :) = nothing
accum_sum(xs::AbstractArray{<:Number}; dims = :) = sum(xs, dims = dims)
accum_sum(xs::AbstractArray{<:AbstractArray{<:Number}}; dims = :) = sum(xs, dims = dims)
accum_sum(xs::Number; dims = :) = xs
# https://github.com/FluxML/Zygote.jl/issues/594
function Base.reducedim_init(::typeof(identity), ::typeof(accum), A::AbstractArray, region)
Base.reducedim_initarray(A, region, nothing, Union{Nothing,eltype(A)})
end
function unbroadcast(x::AbstractArray, x̄)
N = ndims(x̄)
if length(x) == length(x̄)
_project(x, x̄) # ProjectTo handles reshape, offsets, structured matrices, row vectors
else
dims = ntuple(d -> size(x, d) == 1 ? d : ndims(x̄)+1, ndims(x̄))
_project(x, accum_sum(x̄; dims = dims))
end
end
unbroadcast(x::Number, x̄) = accum_sum(x̄)
unbroadcast(x::Tuple{<:Any}, x̄) = (accum_sum(x̄),)
unbroadcast(x::Base.RefValue, x̄) = (x=accum_sum(x̄),)
unbroadcast(x::Tuple, x̄) = NTuple{length(x)}(length(x) == length(x̄) ? x̄ : accum_sum(x̄; dims=2:ndims(x̄))) # case length(x) > 1
unbroadcast(x::Tuple, x̄::Nothing) = nothing
# fixing issue #1184, not duplicate method, since the above allows for an empty tuple
unbroadcast(x::Tuple{<:Any}, x̄::Nothing) = nothing
unbroadcast(x::AbstractArray, x̄::Nothing) = nothing
# Split Reverse Mode
# ==================
# TODO: use DiffRules here. It's complicated a little by the fact that we need
# to do CSE, then broadcast-ify the expression so that the closure captures the
# right arrays.
@adjoint broadcasted(::typeof(+), xs::Numeric...) =
broadcast(+, xs...), ȳ -> (nothing, map(x -> unbroadcast(x, ȳ), xs)...)
@adjoint broadcasted(::typeof(-), x::Numeric, y::Numeric) = x .- y,
Δ -> (nothing, unbroadcast(x, Δ), _minus(unbroadcast(y, Δ)))
@adjoint broadcasted(::typeof(-), x::Numeric) = .-x,
Δ -> (nothing, _minus(Δ))
_minus(Δ) = -Δ
_minus(::Nothing) = nothing
@adjoint broadcasted(::typeof(*), x::Numeric, y::Numeric) = x.*y,
Δ -> (nothing, unbroadcast(x, Δ .* conj.(y)), unbroadcast(y, Δ .* conj.(x)))
@adjoint broadcasted(::typeof(*), x::Number, y::AbstractArray{<:Number}) =
_pullback(__context__, *, x, y) # this uses dot(y,Δ) instead of sum(Δ .* conj.(y))
@adjoint broadcasted(::typeof(*), x::AbstractArray{<:Number}, y::Number) =
_pullback(__context__, *, x, y)
@adjoint function broadcasted(::typeof(/), x::Numeric, y::Numeric)
res = x ./ y
res, Δ -> (nothing, unbroadcast(x, Δ ./ conj.(y)), unbroadcast(y, .-Δ .* conj.(res ./ y)))
end
@adjoint broadcasted(::typeof(/), x::AbstractArray{<:Number}, y::Number) =
_pullback(__context__, /, x, y)
@adjoint function broadcasted(::typeof(Base.literal_pow), ::typeof(^), x::Numeric, exp::Val{p}) where p
y = Base.literal_pow.(^, x, exp)
y, ȳ -> (nothing, nothing, ȳ .* p .* conj.(x .^ (p - 1)), nothing)
end
@adjoint broadcasted(::typeof(identity), x::Numeric) = x, Δ -> (nothing, Δ)
@adjoint function broadcasted(::typeof(tanh), x::Numeric)
y = tanh.(x)
y, ȳ -> (nothing, ȳ .* conj.(1 .- y.^2))
end
@adjoint broadcasted(::typeof(conj), x::Numeric) =
conj(x), z̄ -> (nothing, conj(z̄))
@adjoint broadcasted(::typeof(real), x::Numeric) =
real(x), z̄ -> (nothing, real(z̄))
@adjoint broadcasted(::typeof(imag), x::Numeric) =
imag.(x), z̄ -> (nothing, im .* real.(z̄))
@adjoint broadcasted(::typeof(abs2), x::Numeric) =
abs2.(x), z̄ -> (nothing, 2 .* real.(z̄) .* x)
@adjoint function broadcasted(::typeof(+), a::AbstractArray{<:Number}, b::Bool)
y = b === false ? a : a .+ b
y, Δ -> (nothing, Δ, nothing)
end
@adjoint function broadcasted(::typeof(+), b::Bool, a::AbstractArray{<:Number})
y = b === false ? a : b .+ a
y, Δ -> (nothing, nothing, Δ)
end
@adjoint function broadcasted(::typeof(-), a::AbstractArray{<:Number}, b::Bool)
y = b === false ? a : a .- b
y, Δ -> (nothing, Δ, nothing)
end
@adjoint function broadcasted(::typeof(-), b::Bool, a::AbstractArray{<:Number})
b .- a, Δ -> (nothing, nothing, .-Δ)
end
@adjoint function broadcasted(::typeof(*), a::AbstractArray{<:Number}, b::Bool)
if b === false
zero(a), Δ -> (nothing, zero(Δ), nothing)
else
a, Δ -> (nothing, Δ, nothing)
end
end
@adjoint function broadcasted(::typeof(*), b::Bool, a::AbstractArray{<:Number})
if b === false
zero(a), Δ -> (nothing, nothing, zero(Δ))
else
a, Δ -> (nothing, nothing, Δ)
end
end
@adjoint broadcasted(::Type{T}, x::Numeric) where {T<:Number} =
T.(x), ȳ -> (nothing, _project(x, ȳ),)
# General Fallback
# ================
# The fused reverse mode implementation is the most general but currently has
# poor performance. It works by flattening the broadcast and mapping the call to
# `_pullback` over the input.
# However, the core call
# broadcast(_pullback, (cx,), f, args...)
# is already 10x slower than a simple broadcast (presumably due to inlining
# issues, or something similar) and the other operations needed take it to about
# 100x overhead.
@generated inclen(::NTuple{N,Any}) where N = Val(N+1)
# Avoid hitting special cases for `Adjoint` etc.
_broadcast(f::F, x...) where F = materialize(broadcasted(f, x...))
collapse_nothings(xs::AbstractArray{Nothing}) = nothing
collapse_nothings(xs) = xs
_dual_purefun(::Type{F}) where {F<:Function} = Base.issingletontype(F)
_dual_purefun(::Type) = false
_dual_purefun(::Type{typeof(^)}) = false # avoid DomainError from negative powers
_dual_safearg(x::Numeric{<:Real}) = true
_dual_safearg(x::Numeric{<:Complex}) = true
_dual_safearg(x::Ref{<:Numeric{<:Real}}) = true
_dual_safearg(x::Ref{<:Numeric{<:Complex}}) = true
_dual_safearg(x::Union{Type,Val,Symbol}) = true # non-differentiable types
_dual_safearg(x) = false
@adjoint function broadcasted(::AbstractArrayStyle, f::F, args...) where {F}
T = Broadcast.combine_eltypes(f, args)
# Avoid generic broadcasting in two easy cases:
if T == Bool
return (f.(args...), _ -> nothing)
elseif T <: Union{Real, Complex} && isconcretetype(T) && _dual_purefun(F) && all(_dual_safearg, args) && !isderiving()
return broadcast_forward(f, args...)
end
len = inclen(args)
y∂b = _broadcast((x...) -> _pullback(__context__, f, x...), args...)
y = broadcast(first, y∂b)
function ∇broadcasted(ȳ)
dxs_zip = map(((_, pb), ȳ₁) -> pb(ȳ₁), y∂b, ȳ)
dxs = ntuple(len) do i
collapse_nothings(map(StaticGetter{i}(), dxs_zip))
end
(nothing, accum_sum(dxs[1]), map(unbroadcast, args, Base.tail(dxs))...)
end
return y, ∇broadcasted
end
@adjoint function broadcasted(::AbstractArrayStyle{0}, f, args...)
y, ∂b = _broadcast((x...) -> _pullback(__context__, f, x...), args...)
function ∇broadcasted0(ȳ)
dxs = ∂b(ȳ)
dxs === nothing && return nothing
(nothing, dxs...)
end
y, ∇broadcasted0
end
# Use the `map` adjoint in this special case, which is the same but applies
# pullbacks in reverse order.
# This leaves regular `broadcast` technically incorrect when the broadcasted
# function is stateful.
# Look, I'm not proud of it, but this is extremely rare in practice.
# @adjoint function broadcasted(f, x)
# ∇map(__context__, f, x)
# end
@adjoint! (b::typeof(broadcast))(f, args...) = _pullback(__context__, broadcasted, f, args...)
# Forward Mode -- necessary for CUDA, also used as a fast path above
import ForwardDiff
using ForwardDiff: Dual, Partials, value, partials
# We do this because it ensures type stability so it compiles nicely on the gpu
# The val is needed for some type stability
@inline dual(x, i, ::Val{N}) where {N} = x
@inline dual(x::Bool, i, ::Val{N}) where {N} = x
@inline dual(x::Real, i, ::Val{N}) where {N} = Dual(x, ntuple(==(i), N))
# For complex since ForwardDiff.jl doesn't play nicely with complex numbers we
# construct a Complex dual number and tag the real and imaginary parts separately
@inline function dual(x::Complex{T}, i, ::Val{N}) where {T,N}
re_dual = Dual(real(x), ntuple(==(i), 2N))
im_dual = Dual(imag(x), ntuple(==(N+i), 2N))
return Complex(re_dual, im_dual)
end
function dualize(args::Vararg{Any, N}) where {N}
ds = map(args, ntuple(identity,N)) do x, i
return dual(x, i, Val(N))
end
return ds
end
@inline function dual_function(f::F) where F
function (args::Vararg{Any,N}) where N
ds = dualize(args...)
return f(ds...)
end
end
@inline function broadcast_forward(f, args::Vararg{Any,N}) where N
out = dual_function(f).(args...)
T = eltype(out)
T <: Union{Dual, Complex{<:Dual}} || return (out, _ -> nothing)
if any(eltype(a) <: Complex for a in args)
_broadcast_forward_complex(T, out, args...)
else
_broadcast_forward(T, out, args...)
end
end
# Real input and real output pullback
@inline function _broadcast_forward(::Type{<:Dual}, out, args::Vararg{Any, N}) where {N}
valN = Val(N)
y = broadcast(x -> value(x), out)
function bc_fwd_back(ȳ)
dargs = ntuple(valN) do i
unbroadcast(args[i], broadcast((y1, o1) -> y1 * partials(o1,i), ȳ, out))
end
(nothing, nothing, dargs...) # nothings for broadcasted & f
end
return y, bc_fwd_back
end
# This handles the complex output and real input pullback
@inline function _broadcast_forward(::Type{<:Complex}, out, args::Vararg{Any, N}) where {N}
valN = Val(N)
y = broadcast(x -> Complex(value(real(x)), value(imag(x))), out)
function bc_fwd_back(ȳ)
dargs = ntuple(valN) do i
unbroadcast(args[i], broadcast((y1, o1) -> (real(y1)*partials(real(o1),i) + imag(y1)*partials(imag(o1), i)), ȳ, out))
end
(nothing, nothing, dargs...) # nothings for broadcasted & f
end
return y, bc_fwd_back
end
# This handles complex input and real output. We use the gradient definition from ChainRules here
# since it agrees with what Zygote did for real(x).
@inline function _broadcast_forward_complex(::Type{<:Dual}, out, args::Vararg{Any, N}) where {N}
valN = Val(N)
y = broadcast(x -> value(x), out)
function bc_fwd_back(ȳ)
dargs = ntuple(valN) do i
unbroadcast(args[i], broadcast((y1, o1) -> y1 * Complex(partials(o1, i), partials(o1, i+N)), ȳ, out))
end
(nothing, nothing, dargs...) # nothings for broadcasted & f
end
return y, bc_fwd_back
end
# # # This is for complex input and complex output
# If we assume that
# f(x + iy) = u(x,y) + iv(x,y)
# then we do the following for the adjoint
# Δu ∂u/∂x + Δv∂v/∂x + i(Δu∂u/∂y + Δv ∂v/∂y )
# this follows https://juliadiff.org/ChainRulesCore.jl/stable/maths/complex.html
function _adjoint_complex(N, Δz, df, i)
Δu, Δv = reim(Δz)
du, dv = reim(df)
return Complex(Δu*partials(du, i) + Δv*partials(dv, i), Δu*partials(du, i+N) + Δv*partials(dv, i+N))
end
@inline function _broadcast_forward_complex(::Type{<:Complex}, out, args::Vararg{Any, N}) where {N}
valN = Val(N)
y = broadcast(x -> Complex(value(real(x)), value(imag(x))), out)
function bc_fwd_back(ȳ)
dargs = ntuple(valN) do i
unbroadcast(args[i], broadcast((y1, o1) -> _adjoint_complex(N, y1, o1, i), ȳ, out))
end
(nothing, nothing, dargs...) # nothings for broadcasted & f
end
return y, bc_fwd_back
end
using GPUArraysCore # replaces @require CUDA block, weird indenting to preserve git blame
# Ordinary broadcasting calls broadcast_forward anyway when certain its' safe,
# so perhaps this can be deleted? Possible edge case here:
# https://github.com/FluxML/Zygote.jl/pull/1018#issuecomment-873629415
@adjoint broadcasted(::AbstractGPUArrayStyle, f, args...) =
broadcast_forward(f, args...)
@adjoint (::Type{T})(xs::Array) where {T <: AbstractGPUArray} =
T(xs), Δ -> (convert(Array, Δ), )
@adjoint function sum(xs::AbstractGPUArray; dims = :)
placeholder = similar(xs)
sum(xs, dims = dims), Δ -> (placeholder .= Δ,)
end
# Make sure sum(f, ::CuArray) uses broadcase through forward-mode defined above
# Not the ChainRules.rrule which will use the Zygote.Context and thus not be GPU compatible
@adjoint function sum(f, xs::AbstractGPUArray; kws...)
@assert !haskey(kws, :init) # TODO add init support (julia 1.6)
return pullback((f, xs) -> sum(f.(xs); kws...), __context__, f, xs)
end
@adjoint function Base.convert(::Type{T}, xs::Array) where {T<:AbstractGPUArray}
Base.convert(T, xs), Δ -> (nothing, Base.convert(Array, Δ),)
end
pull_block_vert(sz, Δ::AbstractGPUArray, A::Number) = @allowscalar Δ[sz]