$ curl https://sh.rustup.rs -sSf | sh
$ source $HOME/.cargo/env
$ rustup component add rustfmt
If your rustc version is lower than 1.39.0, please update it:
$ rustup update
On Linux systems you may need to install libssl-dev, pkg-config, zlib1g-dev, etc. On Ubuntu:
$ sudo apt-get update
$ sudo apt-get install libssl-dev libudev-dev pkg-config zlib1g-dev llvm clang
$ git clone https://github.com/solana-labs/solana.git
$ cd solana
$ cargo build
$ ./run.sh
Run the test suite:
$ cargo test
Start your own testnet locally, instructions are in the online docs.
testnet
- public stable testnet accessible via devnet.solana.com. Runs 24/7
They are deployed with the ci/testnet-manager.sh
script through a list of scheduled
buildkite jobs.
Each testnet can be manually manipulated from buildkite as well.
Manually trigger the testnet-management pipeline and when prompted select the desired testnet
Increase the TX rate by increasing the number of cores on the client machine which is running
bench-tps
or run multiple clients. Decrease by lowering cores or using the rayon env
variable RAYON_NUM_THREADS=<xx>
Currently, a merged PR is the only way to test a change on the testnet. But you
can run your own testnet using the scripts in the net/
directory.
Edit ci/testnet-manager.sh
Sometimes the dashboard becomes unresponsive. This happens due to glitch in the metrics server. The current solution is to reset the metrics server. Use the following steps.
- The server is hosted in a GCP VM instance. Check if the VM instance is down by trying to SSH
into it from the GCP console. The name of the VM is
metrics-solana-com
. - If the VM is inaccessible, reset it from the GCP console.
- Once VM is up (or, was already up), the metrics services can be restarted from build automation.
- Navigate to https://buildkite.com/solana-labs/metrics-dot-solana-dot-com in your web browser
- Click on
New Build
- This will show a pop up dialog. Click on
options
drop down. - Type in
FORCE_START=true
inEnvironment Variables
text box. - Click
Create Build
- This will restart the metrics services, and the dashboards should be accessible afterwards.
Testnet may exhibit different symptoms of failures. Primary statistics to check are
- Rise in Confirmation Time
- Nodes are not voting
- Panics, and OOM notifications
Check the following if there are any signs of failure.
- Did testnet deployment fail?
- View buildkite logs for the last deployment: https://buildkite.com/solana-labs/testnet-management
- Use the relevant branch
- If the deployment failed, look at the build logs. The build artifacts for each remote node is uploaded. It's a good first step to triage from these logs.
- You may have to log into remote node if the deployment succeeded, but something failed during runtime.
- Get the private key for the testnet deployment from
metrics-solana-com
GCP instance. - SSH into
metrics-solana-com
using GCP console and do the following.
sudo bash cd ~buildkite-agent/.ssh ls
- Copy the relevant private key to your local machine
- Find the public IP address of the AWS instance for the remote node using AWS console
ssh -i <private key file> ubuntu@<ip address of remote node>
- The logs are in
~solana\solana
folder
- Get the private key for the testnet deployment from
First install the nightly build of rustc. cargo bench
requires use of the
unstable features only available in the nightly build.
$ rustup install nightly
Run the benchmarks:
$ cargo +nightly bench
The release process for this project is described here.
To generate code coverage statistics:
$ scripts/coverage.sh
$ open target/cov/lcov-local/index.html
Why coverage? While most see coverage as a code quality metric, we see it primarily as a developer productivity metric. When a developer makes a change to the codebase, presumably it's a solution to some problem. Our unit-test suite is how we encode the set of problems the codebase solves. Running the test suite should indicate that your change didn't infringe on anyone else's solutions. Adding a test protects your solution from future changes. Say you don't understand why a line of code exists, try deleting it and running the unit-tests. The nearest test failure should tell you what problem was solved by that code. If no test fails, go ahead and submit a Pull Request that asks, "what problem is solved by this code?" On the other hand, if a test does fail and you can think of a better way to solve the same problem, a Pull Request with your solution would most certainly be welcome! Likewise, if rewriting a test can better communicate what code it's protecting, please send us that patch!
All claims, content, designs, algorithms, estimates, roadmaps, specifications, and performance measurements described in this project are done with the author's best effort. It is up to the reader to check and validate their accuracy and truthfulness. Furthermore nothing in this project constitutes a solicitation for investment.